BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 19566642)

  • 1. Reactive oxygen species scavenging enzymes and down-adjustment of metabolism level in mitochondria associated with desiccation-tolerance acquisition of maize embryo.
    Wu JH; Wang WQ; Song SQ; Cheng HY
    J Integr Plant Biol; 2009 Jul; 51(7):638-45. PubMed ID: 19566642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity of Antiaris toxicaria seeds and axes.
    Cheng HY; Song SQ
    J Integr Plant Biol; 2008 Dec; 50(12):1549-56. PubMed ID: 19093973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The response difference of mitochondria in recalcitrant Antiaris toxicaria axes and orthodox Zea mays embryos to dehydration injury.
    Song SQ; Tian MH; Kan J; Cheng HY
    J Integr Plant Biol; 2009 Jul; 51(7):646-53. PubMed ID: 19566643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dehydration-induced intracellular solute changes and acquisition of plant desiccation tolerance].
    Zhang M; Lu Y; Wang XF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Feb; 33(1):9-17. PubMed ID: 17287564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics of desiccation tolerance during development and germination of maize embryos.
    Huang H; Møller IM; Song SQ
    J Proteomics; 2012 Feb; 75(4):1247-62. PubMed ID: 22108046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-disaccharide-based mechanisms of protection during drying.
    Oliver AE; Leprince O; Wolkers WF; Hincha DK; Heyer AG; Crowe JH
    Cryobiology; 2001 Sep; 43(2):151-67. PubMed ID: 11846470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of Chinese wampee axes and maize embryos to dehydration at different rates.
    Huang H; Song SQ; Wu XJ
    J Integr Plant Biol; 2009 Jan; 51(1):67-74. PubMed ID: 19166496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of cryotolerance in maize embryos during seed development.
    Wen B; Song S
    Cryo Letters; 2007; 28(2):109-18. PubMed ID: 17522729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.
    Huang H; Song S
    Plant Physiol Biochem; 2013 Jul; 68():61-70. PubMed ID: 23628926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The relationship between the desiccation-induced browning and the metabolism of active oxygen and phenolics in pericarp of postharvest longan fruit].
    Lin HT; Xi YF; Chen SJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Jun; 31(3):287-97. PubMed ID: 15961904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology.
    Bailly C; El-Maarouf-Bouteau H; Corbineau F
    C R Biol; 2008 Oct; 331(10):806-14. PubMed ID: 18926495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1.
    Manfre AJ; LaHatte GA; Climer CR; Marcotte WR
    Plant Cell Physiol; 2009 Feb; 50(2):243-53. PubMed ID: 19073649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox homeostasis in plants. The challenge of living with endogenous oxygen production.
    De Gara L; Locato V; Dipierro S; de Pinto MC
    Respir Physiol Neurobiol; 2010 Aug; 173 Suppl():S13-9. PubMed ID: 20188218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves.
    Zhang L; Zeng F; Xiao R
    Biol Trace Elem Res; 2003 Mar; 91(3):243-52. PubMed ID: 12663948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants.
    Fink MP; Macias CA; Xiao J; Tyurina YY; Delude RL; Greenberger JS; Kagan VE; Wipf P
    Crit Care Med; 2007 Sep; 35(9 Suppl):S461-7. PubMed ID: 17713394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging of reactive oxygen species as the mechanism of drug action.
    Robak J; Marcinkiewicz E
    Pol J Pharmacol; 1995; 47(2):89-98. PubMed ID: 8688896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.
    Roach T; Beckett RP; Minibayeva FV; Colville L; Whitaker C; Chen H; Bailly C; Kranner I
    Plant Cell Environ; 2010 Jan; 33(1):59-75. PubMed ID: 19843255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds.
    Ntuli TM; Finch-Savage WE; Berjak P; Pammenter NW
    J Integr Plant Biol; 2011 Apr; 53(4):270-80. PubMed ID: 21205182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species in melanoma and its therapeutic implications.
    Wittgen HG; van Kempen LC
    Melanoma Res; 2007 Dec; 17(6):400-9. PubMed ID: 17992124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species and development in microbial eukaryotes.
    Aguirre J; Ríos-Momberg M; Hewitt D; Hansberg W
    Trends Microbiol; 2005 Mar; 13(3):111-8. PubMed ID: 15737729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.