These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 19566642)

  • 21. Antioxidant gene responses to ROS-generating xenobiotics in developing and germinated scutella of maize.
    Mylona PV; Polidoros AN; Scandalios JG
    J Exp Bot; 2007; 58(6):1301-12. PubMed ID: 17314079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between loss of desiccation tolerance and programmed cell death (PCD) in mung bean (Vigna radiata) seeds.
    Tian X; Li S; Zeng Q; Huang W; Liu X; Song S
    PLoS One; 2019; 14(7):e0218513. PubMed ID: 31265452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioenergetics and the formation of mitochondrial reactive oxygen species.
    Adam-Vizi V; Chinopoulos C
    Trends Pharmacol Sci; 2006 Dec; 27(12):639-45. PubMed ID: 17056127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cAMP controls oxygen metabolism in mammalian cells.
    Piccoli C; Scacco S; Bellomo F; Signorile A; Iuso A; Boffoli D; Scrima R; Capitanio N; Papa S
    FEBS Lett; 2006 Aug; 580(18):4539-43. PubMed ID: 16870178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can antioxidant's reactive oxygen species (ROS) scavenging capacity contribute to aged seed recovery? Contrasting effect of melatonin, ascorbate and glutathione on germination ability of aged maize seeds.
    Deng B; Yang K; Zhang Y; Li Z
    Free Radic Res; 2017 Oct; 51(9-10):765-771. PubMed ID: 28866950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation.
    Burritt DJ; Larkindale J; Hurd CL
    Planta; 2002 Sep; 215(5):829-38. PubMed ID: 12244449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans.
    Reiter RJ; Tan DX; Mayo JC; Sainz RM; Leon J; Czarnocki Z
    Acta Biochim Pol; 2003; 50(4):1129-46. PubMed ID: 14740000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.).
    Bartoli CG; Gómez F; Martínez DE; Guiamet JJ
    J Exp Bot; 2004 Aug; 55(403):1663-9. PubMed ID: 15258167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photodynamic effects induced by meso-tetrakis[4-(carboxymethyleneoxy)phenyl] porphyrin on isolated Sarcoma 180 ascites mitochondria.
    Chatterjee SR; Possel H; Srivastava TS; Kamat JP; Wolf G; Devasagayam TP
    J Photochem Photobiol B; 1999 Jun; 50(2-3):79-87. PubMed ID: 10515072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels.
    Usta J; Kreydiyyeh S; Knio K; Barnabe P; Bou-Moughlabay Y; Dagher S
    Chem Biol Interact; 2009 Jun; 180(1):39-46. PubMed ID: 19428344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ROS scavenging activity and muscle damage prevention in eccentric exercise in rats.
    Maruhashi Y; Kitaoka K; Yoshiki Y; Nakamura R; Okano A; Nakamura K; Tsuyama T; Shima Y; Tomita K
    J Physiol Sci; 2007 Aug; 57(4):211-6. PubMed ID: 17594755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds.
    Mao C; Zhu Y; Cheng H; Yan H; Zhao L; Tang J; Ma X; Mao P
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29614792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased UV-B radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in maize (Zea mays L.) pollen.
    Wang S; Xie B; Yin L; Duan L; Li Z; Eneji AE; Tsuji W; Tsunekawa A
    Photochem Photobiol; 2010; 86(1):110-6. PubMed ID: 19906093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput screening for reactive oxygen species scavengers targeting mitochondria.
    Chen XP; Du GH
    Methods Find Exp Clin Pharmacol; 2008 May; 30(4):255-60. PubMed ID: 18773119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs.
    Prieto-Dapena P; Castaño R; Almoguera C; Jordano J
    Plant J; 2008 Jun; 54(6):1004-14. PubMed ID: 18315542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species and peroxisomes: struggling for balance.
    Bonekamp NA; Völkl A; Fahimi HD; Schrader M
    Biofactors; 2009; 35(4):346-55. PubMed ID: 19459143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidant metabolism of Xenopus laevis embryos during the first days of development.
    Rizzo AM; Adorni L; Montorfano G; Rossi F; Berra B
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):94-100. PubMed ID: 17134930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation.
    Roach T; Ivanova M; Beckett RP; Minibayeva FV; Green I; Pritchard HW; Kranner I
    Physiol Plant; 2008 Jun; 133(2):131-9. PubMed ID: 18452494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free radical metabolism in human erythrocytes.
    Cimen MY
    Clin Chim Acta; 2008 Apr; 390(1-2):1-11. PubMed ID: 18243141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar signalling and antioxidant network connections in plant cells.
    Bolouri-Moghaddam MR; Le Roy K; Xiang L; Rolland F; Van den Ende W
    FEBS J; 2010 May; 277(9):2022-37. PubMed ID: 20412056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.