These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 19567265)

  • 1. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution.
    Kotrba P; Najmanova J; Macek T; Ruml T; Mackova M
    Biotechnol Adv; 2009; 27(6):799-810. PubMed ID: 19567265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.
    Fasani E; Manara A; Martini F; Furini A; DalCorso G
    Plant Cell Environ; 2018 May; 41(5):1201-1232. PubMed ID: 28386947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.
    Boechat CL; Pistóia VC; Gianelo C; Camargo FA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of toxic trace elements in soil and water.
    LeDuc DL; Terry N
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):514-20. PubMed ID: 15883830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic plants in phytoremediation: recent advances and new possibilities.
    Cherian S; Oliveira MM
    Environ Sci Technol; 2005 Dec; 39(24):9377-90. PubMed ID: 16475312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants].
    Lang ML; Zhang YX; Chai TY
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):157-64. PubMed ID: 15969101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.
    Rajkumar M; Ae N; Prasad MN; Freitas H
    Trends Biotechnol; 2010 Mar; 28(3):142-9. PubMed ID: 20044160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.
    Chaney RL; Angle JS; Broadhurst CL; Peters CA; Tappero RV; Sparks DL
    J Environ Qual; 2007; 36(5):1429-43. PubMed ID: 17766822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals in plants and phytoremediation.
    Cheng S
    Environ Sci Pollut Res Int; 2003; 10(5):335-40. PubMed ID: 14535650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration.
    Wu J; Yang L; Zhong F; Cheng S
    Environ Sci Pollut Res Int; 2014 Dec; 21(23):13452-60. PubMed ID: 25012206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives.
    Sarwar N; Imran M; Shaheen MR; Ishaque W; Kamran MA; Matloob A; Rehim A; Hussain S
    Chemosphere; 2017 Mar; 171():710-721. PubMed ID: 28061428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil].
    Yang Z; Wang ZL; Li BW; Zhang RF
    Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):2025-31. PubMed ID: 19947228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment.
    Bañuelos G; Terry N; Leduc DL; Pilon-Smits EA; Mackey B
    Environ Sci Technol; 2005 Mar; 39(6):1771-7. PubMed ID: 15819237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
    Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I
    Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.
    Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D
    Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.