BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19567336)

  • 1. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke.
    Miller LC; Ruiz-Torres R; Stienen AH; Dewald JP
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2312-7. PubMed ID: 19567336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrist and Finger Torque Sensor for the quantification of upper limb motor impairments following brain injury.
    Stienen AH; Moulton TS; Miller LC; Dewald JP
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975464. PubMed ID: 22275662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke.
    Miller LC; Dewald JP
    Clin Neurophysiol; 2012 Jun; 123(6):1216-25. PubMed ID: 22364723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation.
    Martinez JA; Ng P; Lu S; Campagna MS; Celik O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650459. PubMed ID: 24187276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke.
    McPherson LM; Dewald JPA
    Clin Neurophysiol; 2019 Apr; 130(4):454-468. PubMed ID: 30771722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke.
    Lan Y; Yao J; Dewald JPA
    Neurorehabil Neural Repair; 2017 Jun; 31(6):521-529. PubMed ID: 28506146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal synergies and associated reactions post-hemiparetic stroke reflect muscle activation patterns of brainstem motor pathways.
    McPherson LM; Dewald JPA
    Front Neurol; 2022; 13():934670. PubMed ID: 36299276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects.
    Hesse S; Schulte-Tigges G; Konrad M; Bardeleben A; Werner C
    Arch Phys Med Rehabil; 2003 Jun; 84(6):915-20. PubMed ID: 12808550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal haptic drive: a robot for arm and wrist rehabilitation.
    Oblak J; Cikajlo I; Matjacić Z
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):293-302. PubMed ID: 19846386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.
    Pehlivan AU; Celik O; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.
    Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P
    PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive velocity field control of a forearm-wrist rehabilitation robot.
    Erdogan A; Satici AC; Patoglu V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975433. PubMed ID: 22275634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke.
    Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation.
    Pehlivan AU; Rose C; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650462. PubMed ID: 24187279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying LDA-based pattern recognition to predict isometric shoulder and elbow torque generation in individuals with chronic stroke with moderate to severe motor impairment.
    Kopke JV; Hargrove LJ; Ellis MD
    J Neuroeng Rehabil; 2019 Mar; 16(1):35. PubMed ID: 30836971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.