BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 1956789)

  • 1. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome.
    Weeda G; Ma LB; van Ham RC; van der Eb AJ; Hoeijmakers JH
    Nucleic Acids Res; 1991 Nov; 19(22):6301-8. PubMed ID: 1956789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the mouse homolog of the XPBC/ERCC-3 gene implicated in xeroderma pigmentosum and Cockayne's syndrome.
    Weeda G; Ma L; van Ham RC; Bootsma D; van der Eb AJ; Hoeijmakers JH
    Carcinogenesis; 1991 Dec; 12(12):2361-8. PubMed ID: 1747940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome.
    Weeda G; van Ham RC; Vermeulen W; Bootsma D; van der Eb AJ; Hoeijmakers JH
    Cell; 1990 Aug; 62(4):777-91. PubMed ID: 2167179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and functional analysis of the XPBC/ERCC-3 promoter: transcription activity is dependent on the integrity of an Sp1-binding site.
    Ma L; Weeda G; Jochemsen AG; Bootsma D; Hoeijmakers JH; van der Eb AJ
    Nucleic Acids Res; 1992 Jan; 20(2):217-24. PubMed ID: 1741247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the mouse XPAC gene.
    van Oostrom CT; de Vries A; Verbeek SJ; van Kreijl CF; van Steeg H
    Nucleic Acids Res; 1994 Jan; 22(1):11-4. PubMed ID: 8127648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne's syndrome group B.
    Troelstra C; Hesen W; Bootsma D; Hoeijmakers JH
    Nucleic Acids Res; 1993 Feb; 21(3):419-26. PubMed ID: 8382798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cloned human DNA excision repair gene ERCC-1 fails to correct xeroderma pigmentosum complementation groups A through I.
    van Duin M; Vredeveldt G; Mayne LV; Odijk H; Vermeulen W; Klein B; Weeda G; Hoeijmakers JH; Bootsma D; Westerveld A
    Mutat Res; 1989 Mar; 217(2):83-92. PubMed ID: 2918869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic characterization of the human DNA excision repair gene ERCC-1.
    van Duin M; Koken MH; van den Tol J; ten Dijke P; Odijk H; Westerveld A; Bootsma D; Hoeijmakers JH
    Nucleic Acids Res; 1987 Nov; 15(22):9195-213. PubMed ID: 3684592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes.
    Lamerdin JE; Stilwagen SA; Ramirez MH; Stubbs L; Carrano AV
    Genomics; 1996 Jun; 34(3):399-409. PubMed ID: 8786141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of the Drosophila homolog of the xeroderma pigmentosum complementation-group B correcting gene, ERCC3.
    Koken MH; Vreeken C; Bol SA; Cheng NC; Jaspers-Dekker I; Hoeijmakers JH; Eeken JC; Weeda G; Pastink A
    Nucleic Acids Res; 1992 Nov; 20(21):5541-8. PubMed ID: 1454518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human estrogen receptor-like 1 (ESRL1) gene: genomic organization, chromosomal localization, and promoter characterization.
    Shi H; Shigeta H; Yang N; Fu K; O'Brian G; Teng CT
    Genomics; 1997 Aug; 44(1):52-60. PubMed ID: 9286700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and molecular characterization of the Chinese hamster ERCC2 nucleotide excision repair gene.
    Kirchner JM; Salazar EP; Lamerdin JE; Montgomery MA; Carrano AV; Weber CA
    Genomics; 1994 Oct; 23(3):592-9. PubMed ID: 7851887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Drosophila model for xeroderma pigmentosum and Cockayne's syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene.
    Mounkes LC; Jones RS; Liang BC; Gelbart W; Fuller MT
    Cell; 1992 Dec; 71(6):925-37. PubMed ID: 1458540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune function, mutant frequency, and cancer risk in the DNA repair defective genodermatoses xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy.
    Norris PG; Limb GA; Hamblin AS; Lehmann AR; Arlett CF; Cole J; Waugh AP; Hawk JL
    J Invest Dermatol; 1990 Jan; 94(1):94-100. PubMed ID: 2295840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in the DNA repair and transcription gene ERCC2 in the cancer-prone disorder xeroderma pigmentosum group D.
    Takayama K; Salazar EP; Lehmann A; Stefanini M; Thompson LH; Weber CA
    Cancer Res; 1995 Dec; 55(23):5656-63. PubMed ID: 7585650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2.
    Scherly D; Nouspikel T; Corlet J; Ucla C; Bairoch A; Clarkson SG
    Nature; 1993 May; 363(6425):182-5. PubMed ID: 8483504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor.
    Schaeffer L; Roy R; Humbert S; Moncollin V; Vermeulen W; Hoeijmakers JH; Chambon P; Egly JM
    Science; 1993 Apr; 260(5104):58-63. PubMed ID: 8465201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, promoter analysis and chromosomal assignment of the human APEX gene.
    Akiyama K; Seki S; Oshida T; Yoshida MC
    Biochim Biophys Acta; 1994 Sep; 1219(1):15-25. PubMed ID: 8086453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne's syndrome cells.
    Christians FC; Hanawalt PC
    Mutat Res; 1994 Apr; 323(4):179-87. PubMed ID: 7512688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic characterization of the human DNA excision repair-controlling gene XPAC.
    Satokata I; Iwai K; Matsuda T; Okada Y; Tanaka K
    Gene; 1993 Dec; 136(1-2):345-8. PubMed ID: 8294029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.