BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19567958)

  • 1. Enhanced cycling performance of an Fe0/Fe3O4 nanocomposite electrode for lithium-ion batteries.
    Lee GH; Park JG; Sung YM; Chung KY; Cho WI; Kim DW
    Nanotechnology; 2009 Jul; 20(29):295205. PubMed ID: 19567958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes.
    Jin YH; Seo SD; Shim HW; Park KS; Kim DW
    Nanotechnology; 2012 Mar; 23(12):125402. PubMed ID: 22414887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries.
    Zhao X; Xia D; Zheng K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1350-6. PubMed ID: 22301516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites.
    Moura FC; Araujo MH; Costa RC; Fabris JD; Ardisson JD; Macedo WA; Lago RM
    Chemosphere; 2005 Aug; 60(8):1118-23. PubMed ID: 15993160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries.
    Muraliganth T; Vadivel Murugan A; Manthiram A
    Chem Commun (Camb); 2009 Dec; (47):7360-2. PubMed ID: 20024228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior.
    Cheng J; Wang B; Park CM; Wu Y; Huang H; Nie F
    Chemistry; 2013 Jul; 19(30):9866-74. PubMed ID: 23852958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants.
    Dos Santos Coelho F; Ardisson JD; Moura FC; Lago RM; Murad E; Fabris JD
    Chemosphere; 2008 Mar; 71(1):90-6. PubMed ID: 18061239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.
    Zeng L; Zheng C; Deng C; Ding X; Wei M
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2182-7. PubMed ID: 23438299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries.
    Lang L; Xu Z
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1698-703. PubMed ID: 23387966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries.
    Wu MS; Chiang PC; Lee JT; Lin JC
    J Phys Chem B; 2005 Dec; 109(49):23279-84. PubMed ID: 16375294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries.
    Xu JS; Zhu YJ
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4752-7. PubMed ID: 22934532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of cuprous oxide nanocomposite electrodes by room-temperature chemical partial reduction.
    Park KS; Seo SD; Jin YH; Lee SH; Shim HW; Lee DH; Kim DW
    Dalton Trans; 2011 Oct; 40(37):9498-503. PubMed ID: 21850303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z; Highfield J; Lin M; Teo J; Han YF
    Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled Fe₂O₃/graphene aerogel with high lithium storage performance.
    Xiao L; Wu D; Han S; Huang Y; Li S; He M; Zhang F; Feng X
    ACS Appl Mater Interfaces; 2013 May; 5(9):3764-9. PubMed ID: 23551107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.