BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19568328)

  • 1. Prediction of Fibrinogen Adsorption for Biodegradable Polymers: Integration of Molecular Dynamics and Surrogate Modeling.
    Gubskaya AV; Kholodovych V; Knight D; Kohn J; Welsh WJ
    Polymer (Guildf); 2007 Sep; 48(19):5788-5801. PubMed ID: 19568328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces.
    Smith JR; Knight D; Kohn J; Rasheed K; Weber N; Kholodovych V; Welsh WJ
    J Chem Inf Comput Sci; 2004; 44(3):1088-97. PubMed ID: 15154777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique.
    Weber N; Bolikal D; Bourke SL; Kohn J
    J Biomed Mater Res A; 2004 Mar; 68(3):496-503. PubMed ID: 14762929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consensus QSPR modelling for the prediction of cellular response and fibrinogen adsorption to the surface of polymeric biomaterials.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2019 May; 30(5):363-382. PubMed ID: 31112078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of baboon fibrinogen adsorption to polymers: in vitro and in vivo studies.
    Horbett TA; Cheng CM; Ratner BD; Hoffman AS; Hanson SR
    J Biomed Mater Res; 1986; 20(6):739-72. PubMed ID: 3722213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study on modeling and prediction of optical rotation for biodegradable polymers containing α-amino acids using QSAR approaches.
    Mallakpour S; Hatami M; Golmohammadi H
    J Mol Model; 2011 Jul; 17(7):1743-53. PubMed ID: 21061033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices.
    Weber N; Pesnell A; Bolikal D; Zeltinger J; Kohn J
    Langmuir; 2007 Mar; 23(6):3298-304. PubMed ID: 17291015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.
    Grate JW; Patrash SJ; Kaganovet SN; Abraham MH; Wise BM; Gallagher NB
    Anal Chem; 2001 Nov; 73(21):5247-59. PubMed ID: 11721926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR Modeling of the Refractive Index for Diverse Polymers Using 2D Descriptors.
    Khan PM; Rasulev B; Roy K
    ACS Omega; 2018 Oct; 3(10):13374-13386. PubMed ID: 31458051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of viscoelastic protein layers on polymeric surfaces relevant to platelet adhesion.
    Weber N; Wendel HP; Kohn J
    J Biomed Mater Res A; 2005 Mar; 72(4):420-7. PubMed ID: 15678483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets.
    Valenzuela LM; Knight DD; Kohn J
    Int J Biomater; 2016; 2016():6273414. PubMed ID: 27200091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction by molecular dynamics modeling and simulations of the porous structures formed by dextran polymer chains attached on the surface of the pores of a base matrix: characterization of porous structures.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Phys Chem B; 2005 Nov; 109(44):21028-39. PubMed ID: 16853725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platelet Adhesion and Activation on Chiral Surfaces: The Influence of Protein Adsorption.
    Fan Y; Luo R; Han H; Weng Y; Wang H; Li J; Yang P; Wang Y; Huang N
    Langmuir; 2017 Oct; 33(39):10402-10410. PubMed ID: 28885030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural descriptor and surrogate modeling for design of biodegradable scaffolds.
    Sestito JM; Harris TAL; Wang Y
    J Mech Behav Biomed Mater; 2024 Apr; 152():106415. PubMed ID: 38301521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postadsorptive behavior of plasma proteins on poly(propylene oxide)-segmented nylon-610 surfaces and its implication in preventing contact-induced activation of platelets on these surfaces.
    Takei YG; Yui N; Okano T; Maruyama A; Sanui K; Sakurai Y; Ogata N
    J Biomater Sci Polym Ed; 1994; 6(2):149-68. PubMed ID: 7947481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond.
    Liu Y; Zhang D; Tang Y; Zhang Y; Chang Y; Zheng J
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11306-11319. PubMed ID: 33635641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
    Craven BA; Aycock KI; Herbertson LH; Malinauskas RA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of interaction force of fibrinogen at well-defined surfaces with various structures.
    Chen W; Inoue Y; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(14-15):1629-40. PubMed ID: 25025547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.