These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 19568617)

  • 1. Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis.
    Che CM; Huang JS
    Chem Commun (Camb); 2009 Jul; (27):3996-4015. PubMed ID: 19568617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Metalloporphyrin catalyzed biomimetic oxidation potentials: potential uses and applications].
    Balogh GT; Keserü GM
    Acta Pharm Hung; 2003; 73(3):153-62. PubMed ID: 15112438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450.
    Murahashi S; Zhang D
    Chem Soc Rev; 2008 Aug; 37(8):1490-501. PubMed ID: 18648675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dichlororuthenium(IV) complex of meso-tetrakis(2,6-dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron-deficient alkenes by using 2,6-dichloropyridine N-oxide.
    Zhang JL; Che CM
    Chemistry; 2005 Jun; 11(13):3899-914. PubMed ID: 15812875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic alcohol oxidations by an iron(III) porphyrin complex: relevance to cytochrome P-450 catalytic oxidation and involvement of the two-state radical rebound mechanism.
    Han JH; Yoo SK; Seo JS; Hong SJ; Kim SK; Kim C
    Dalton Trans; 2005 Jan; (2):402-6. PubMed ID: 15616733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.
    Wang MZ; Zhou CY; Wong MK; Che CM
    Chemistry; 2010 May; 16(19):5723-35. PubMed ID: 20391566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach.
    Piera J; Bäckvall JE
    Angew Chem Int Ed Engl; 2008; 47(19):3506-23. PubMed ID: 18383499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metalloporphyrins as biomimetic models for cytochrome p-450 in the oxidation of atrazine.
    Gotardo MC; Moraes LA; Assis MD
    J Agric Food Chem; 2006 Dec; 54(26):10011-8. PubMed ID: 17177535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.
    dos Santos MD; Martins PR; dos Santos PA; Bortocan R; Iamamoto Y; Lopes NP
    Eur J Pharm Sci; 2005 Sep; 26(1):62-70. PubMed ID: 16019193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer supports in organic catalysis and synthesis.
    Bergbreiter DE
    Curr Opin Drug Discov Devel; 2001 Nov; 4(6):736-44. PubMed ID: 11899613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of antiparasitic 2-substituted quinolines using metalloporphyrin catalysts: scale-up of a biomimetic reaction for metabolite production of drug candidates.
    Akagah B; Lormier AT; Fournet A; Figadère B
    Org Biomol Chem; 2008 Dec; 6(24):4494-7. PubMed ID: 19039354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of porphyrins in the presence of acid-labile metalloporphyrins: a new route to mixed-metal multiporphyrin arrays.
    Speckbacher M; Yu L; Lindsey JS
    Inorg Chem; 2003 Jul; 42(14):4322-37. PubMed ID: 12844305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic and biomimetic aminolysis reactions: useful tools for selective transformations on polyfunctional substrates.
    Alfonso I; Gotor V
    Chem Soc Rev; 2004 May; 33(4):201-9. PubMed ID: 15103401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metalloporphyrin-mediated asymmetric nitrogen-atom transfer to hydrocarbons: aziridination of alkenes and amidation of saturated C-H bonds catalyzed by chiral ruthenium and manganese porphyrins.
    Liang JL; Huang JS; Yu XQ; Zhu N; Che CM
    Chemistry; 2002 Apr; 8(7):1563-72. PubMed ID: 11933085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation chemistry of poly(ethylene glycol)-supported carbonylruthenium(II) and dioxoruthenium(VI) meso-tetrakis(pentafluorophenyl)porphyrin.
    Zhang JL; Huang JS; Che CM
    Chemistry; 2006 Apr; 12(11):3020-31. PubMed ID: 16491497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework.
    Chen Y; Hoang T; Ma S
    Inorg Chem; 2012 Dec; 51(23):12600-2. PubMed ID: 23167716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient controllable oxidation of alcohols to aldehydes and acids with sodium periodate catalyzed by water-soluble metalloporphyrins as biomimetic catalyst.
    Ren QG; Chen SY; Zhou XT; Ji HB
    Bioorg Med Chem; 2010 Dec; 18(23):8144-9. PubMed ID: 21051235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts.
    Alkordi MH; Liu Y; Larsen RW; Eubank JF; Eddaoudi M
    J Am Chem Soc; 2008 Sep; 130(38):12639-41. PubMed ID: 18759392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic oxidation of Hantzsch 1,4-dihydropyridines with tetra-n-butylammonium periodate catalyzed by tetraphenylporphyrinatomanganese(III) chloride [Mn(TPP)Cl].
    Nasr-Esfahani M; Moghadam M; Tangestaninejad S; Mirkhani V
    Bioorg Med Chem Lett; 2005 Jul; 15(13):3276-8. PubMed ID: 15921908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.