BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19568783)

  • 21. Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization.
    Lai Z; Ferry KV; Diamond MA; Wee KE; Kim YB; Ma J; Yang T; Benfield PA; Copeland RA; Auger KR
    J Biol Chem; 2001 Aug; 276(33):31357-67. PubMed ID: 11397792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation.
    Fu W; Ma Q; Chen L; Li P; Zhang M; Ramamoorthy S; Nawaz Z; Shimojima T; Wang H; Yang Y; Shen Z; Zhang Y; Zhang X; Nicosia SV; Zhang Y; Pledger JW; Chen J; Bai W
    J Biol Chem; 2009 May; 284(21):13987-4000. PubMed ID: 19321440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3 ligase MDM2.
    Nie J; Xie P; Liu L; Xing G; Chang Z; Yin Y; Tian C; He F; Zhang L
    J Biol Chem; 2010 Jul; 285(30):22818-30. PubMed ID: 20484049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo.
    Shimizu H; Saliba D; Wallace M; Finlan L; Langridge-Smith PR; Hupp TR
    Biochem J; 2006 Jul; 397(2):355-67. PubMed ID: 16579792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MDM2 promotes ubiquitination and degradation of MDMX.
    Pan Y; Chen J
    Mol Cell Biol; 2003 Aug; 23(15):5113-21. PubMed ID: 12860999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2.
    Saha A; Murakami M; Kumar P; Bajaj B; Sims K; Robertson ES
    J Virol; 2009 May; 83(9):4652-69. PubMed ID: 19244339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53.
    Fang S; Jensen JP; Ludwig RL; Vousden KH; Weissman AM
    J Biol Chem; 2000 Mar; 275(12):8945-51. PubMed ID: 10722742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive ubiquitination activates the tumor suppressor p53.
    Li X; Guo M; Cai L; Du T; Liu Y; Ding HF; Wang H; Zhang J; Chen X; Yan C
    Cell Death Differ; 2020 Jun; 27(6):1807-1818. PubMed ID: 31796886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation.
    Ghosh M; Huang K; Berberich SJ
    Biochemistry; 2003 Mar; 42(8):2291-9. PubMed ID: 12600196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNF12 promotes p53-dependent cell growth suppression and apoptosis by targeting MDM2 for destruction.
    Gao K; Wang C; Jin X; Xiao J; Zhang E; Yang X; Wang D; Huang H; Yu L; Zhang P
    Cancer Lett; 2016 May; 375(1):133-141. PubMed ID: 26926424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of the MDM2 RING domain enhances p53 transcriptional activity in mice.
    Tian H; Tackmann NR; Jin A; Zheng J; Zhang Y
    J Biol Chem; 2017 Dec; 292(52):21614-21622. PubMed ID: 29123033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATM activates p53 by regulating MDM2 oligomerization and E3 processivity.
    Cheng Q; Chen L; Li Z; Lane WS; Chen J
    EMBO J; 2009 Dec; 28(24):3857-67. PubMed ID: 19816404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small molecule MMRi62 targets MDM4 for degradation and induces leukemic cell apoptosis regardless of p53 status.
    Lama R; Xu C; Galster SL; Querol-García J; Portwood S; Mavis CK; Ruiz FM; Martin D; Wu J; Giorgi MC; Bargonetti J; Wang ES; Hernandez-Ilizaliturri FJ; Koudelka GB; Chemler SR; Muñoz IG; Wang X
    Front Oncol; 2022; 12():933446. PubMed ID: 35992795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escape, or Vanish: Control the Fate of p53 through MDM2-Mediated Ubiquitination.
    Wei J; Yang Y; Lu M; Xu L; Liu F; Yuan Z; Bao Q; Jiang Z; Xu X; Guo X; Zhang X; You Q; Sun H
    Anticancer Agents Med Chem; 2015; 16(2):174-89. PubMed ID: 26343143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative assays of Mdm2 ubiquitin ligase activity and other ubiquitin-utilizing enzymes for inhibitor discovery.
    Auger KR; Copeland RA; Lai Z
    Methods Enzymol; 2005; 399():701-17. PubMed ID: 16338390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity.
    Shi D; Gu W
    Genes Cancer; 2012 Mar; 3(3-4):240-8. PubMed ID: 23150757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.
    Wang C; Ivanov A; Chen L; Fredericks WJ; Seto E; Rauscher FJ; Chen J
    EMBO J; 2005 Sep; 24(18):3279-90. PubMed ID: 16107876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response.
    Lim KH; Park JJ; Gu BH; Kim JO; Park SG; Baek KH
    Sci Rep; 2015 Aug; 5():12793. PubMed ID: 26238070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MDM2-C Functions as an E3 Ubiquitin Ligase.
    Kim JY; Lee R; Xiao G; Forbes D; Bargonetti J
    Cancer Manag Res; 2020; 12():7715-7724. PubMed ID: 32904724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53.
    Buschmann T; Fuchs SY; Lee CG; Pan ZQ; Ronai Z
    Cell; 2000 Jun; 101(7):753-62. PubMed ID: 10892746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.