These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19569005)

  • 21. Steady-state [Formula: see text] above MLSS: evidence that critical speed better represents maximal metabolic steady state in well-trained runners.
    Nixon RJ; Kranen SH; Vanhatalo A; Jones AM
    Eur J Appl Physiol; 2021 Nov; 121(11):3133-3144. PubMed ID: 34351531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of sprint triathlon performance from laboratory tests.
    Van Schuylenbergh R; Eynde BV; Hespel P
    Eur J Appl Physiol; 2004 Jan; 91(1):94-9. PubMed ID: 12955517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood pH and lactate kinetics in the assessment of running endurance.
    Usaj A; Starc V
    Int J Sports Med; 1996 Jan; 17(1):34-40. PubMed ID: 8775574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise.
    Dittrich N; de Lucas RD; Beneke R; Guglielmo LG
    Int J Sports Physiol Perform; 2014 Sep; 9(5):772-6. PubMed ID: 24235775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac autonomic responses to repeated shuttle sprints.
    Nakamura FY; Soares-Caldeira LF; Laursen PB; Polito MD; Leme LC; Buchheit M
    Int J Sports Med; 2009 Nov; 30(11):808-13. PubMed ID: 19685413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of stage duration in incremental running tests on physiological variables.
    Kuipers H; Rietjens G; Verstappen F; Schoenmakers H; Hofman G
    Int J Sports Med; 2003 Oct; 24(7):486-91. PubMed ID: 12968205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Why does exercise terminate at the maximal lactate steady state intensity?
    Baron B; Noakes TD; Dekerle J; Moullan F; Robin S; Matran R; Pelayo P
    Br J Sports Med; 2008 Oct; 42(10):828-33. PubMed ID: 18070803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The traditional maximal lactate steady state test versus the 5 × 2000 m test.
    Legaz-Arrese A; Carranza-García LE; Serrano-Ostáriz E; González-Ravé JM; Terrados N
    Int J Sports Med; 2011 Nov; 32(11):845-50. PubMed ID: 22012640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of a single-day maximal lactate steady state assessment protocol.
    Kuphal KE; Potteiger JA; Frey BB; Hise MP
    J Sports Med Phys Fitness; 2004 Jun; 44(2):132-40. PubMed ID: 15470310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals.
    Figueira TR; Caputo F; Pelarigo JG; Denadai BS
    J Sci Med Sport; 2008 Jun; 11(3):280-6. PubMed ID: 17553745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players.
    Denadai BS; Gomide EB; Greco CC
    J Strength Cond Res; 2005 May; 19(2):364-8. PubMed ID: 15903376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating a test protocol for predicting maximum lactate steady state.
    Bacon L; Kern M
    J Sports Med Phys Fitness; 1999 Dec; 39(4):300-8. PubMed ID: 10726430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy of neuro-fuzzy logic and regression calculations in determining maximal lactate steady-state power output from incremental tests in humans.
    Smekal G; Scharl A; von Duvillard SP; Pokan R; Baca A; Baron R; Tschan H; Hofmann P; Bachl N
    Eur J Appl Physiol; 2002 Dec; 88(3):264-74. PubMed ID: 12458370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximal constant heart rate--a heart rate based method to estimate maximal lactate steady state in running.
    Vobejda C; Fromme K; Samson W; Zimmermann E
    Int J Sports Med; 2006 May; 27(5):368-72. PubMed ID: 16729378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling.
    Hauser T; Adam J; Schulz H
    Int J Sports Med; 2014 Jun; 35(6):517-21. PubMed ID: 24227122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of the Maximal Lactate Steady State in Junior Soccer Players.
    Llodio I; Garcia-Tabar I; Sánchez-Medina L; Ibáñez J; Gorostiaga EM
    Int J Sports Med; 2015 Dec; 36(14):1142-8. PubMed ID: 26332904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationships and significance of lactate minimum, critical velocity, heart rate deflection and 3 000 m track-tests for running.
    Simões HG; Denadai BS; Baldissera V; Campbell CS; Hill DW
    J Sports Med Phys Fitness; 2005 Dec; 45(4):441-51. PubMed ID: 16446674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is maximal lactate steady state during intermittent cycling different for active compared with passive recovery?
    Greco CC; Barbosa LF; Caritá RA; Denadai BS
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1147-52. PubMed ID: 23030656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximal constant 45 min running velocity gives maximal lactate steady state.
    Vobejda C; Wortmann T; Zimmermann E
    J Sports Med Phys Fitness; 2013 Dec; 53(6):588-95. PubMed ID: 24247182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.