These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1956909)

  • 1. Strategies for identification of covalent xenobiotic modifications in proteins by mass spectrometry.
    Kaur S; Hall SC; Burlingame AL
    Prog Clin Biol Res; 1991; 372():107-17. PubMed ID: 1956909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The characterization of protein post-translational modifications by mass spectrometry.
    Schweppe RE; Haydon CE; Lewis TS; Resing KA; Ahn NG
    Acc Chem Res; 2003 Jun; 36(6):453-61. PubMed ID: 12809532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of mass spectrometric molecular weight information to identify proteins in sequence databases.
    Mann M; Højrup P; Roepstorff P
    Biol Mass Spectrom; 1993 Jun; 22(6):338-45. PubMed ID: 8329463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization.
    Zaluzec EJ; Gage DA; Watson JT
    Protein Expr Purif; 1995 Apr; 6(2):109-23. PubMed ID: 7606158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry for protein identification and the study of post translational modifications.
    Salzano AM; Crescenzi M
    Ann Ist Super Sanita; 2005; 41(4):443-50. PubMed ID: 16569912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Top down' protein characterization via tandem mass spectrometry.
    Reid GE; McLuckey SA
    J Mass Spectrom; 2002 Jul; 37(7):663-75. PubMed ID: 12124999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective bridging of bis-cysteinyl residues by arsonous acid derivatives as an approach to the characterization of protein tertiary structures and folding pathways by mass spectrometry.
    Happersberger HP; Przybylski M; Glocker MO
    Anal Biochem; 1998 Nov; 264(2):237-50. PubMed ID: 9866689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation.
    Kellersberger KA; Yu E; Kruppa GH; Young MM; Fabris D
    Anal Chem; 2004 May; 76(9):2438-45. PubMed ID: 15117181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive mass spectrometric analysis of the 20S proteasome complex.
    Huang L; Burlingame AL
    Methods Enzymol; 2005; 405():187-236. PubMed ID: 16413316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequencing covalent modifications of membrane proteins.
    Whitelegge JP; Laganowsky A; Nishio J; Souda P; Zhang H; Cramer WA
    J Exp Bot; 2006; 57(7):1515-22. PubMed ID: 16574746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results.
    Searle BC; Dasari S; Turner M; Reddy AP; Choi D; Wilmarth PA; McCormack AL; David LL; Nagalla SR
    Anal Chem; 2004 Apr; 76(8):2220-30. PubMed ID: 15080731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins.
    Meltretter J; Pischetsrieder M
    Ann N Y Acad Sci; 2008 Apr; 1126():134-40. PubMed ID: 18448807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of electrospray and fast atom bombardment mass spectrometry to the identification of post-translational and other chemical modifications of proteins and peptides.
    Kouach M; Belaïche D; Jaquinod M; Couppez M; Kmiecik D; Ricart G; Van Dorsselaer A; Sautière P; Briand G
    Biol Mass Spectrom; 1994 May; 23(5):283-94. PubMed ID: 8204685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds.
    Rubino FM; Pitton M; Di Fabio D; Colombi A
    Mass Spectrom Rev; 2009; 28(5):725-84. PubMed ID: 19127566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A top down approach to protein structural studies using chemical cross-linking and Fourier transform mass spectrometry.
    Kruppa GH; Schoeniger J; Young MM
    Rapid Commun Mass Spectrom; 2003; 17(2):155-62. PubMed ID: 12512095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.
    Toews J; Rogalski JC; Clark TJ; Kast J
    Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer.
    Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH
    Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry and the age of the proteome.
    Yates JR
    J Mass Spectrom; 1998 Jan; 33(1):1-19. PubMed ID: 9449829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of intact protein complexes by mass spectrometry.
    Heck AJ; Van Den Heuvel RH
    Mass Spectrom Rev; 2004; 23(5):368-89. PubMed ID: 15264235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.