These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19569126)

  • 1. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2009 Jul; 30(13):2328-36. PubMed ID: 19569126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2007 Oct; 28(20):3658-73. PubMed ID: 17941132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global conformations of proteins as predicted from the modeling of their CZE mobility data.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2011 Oct; 32(20):2779-87. PubMed ID: 21948196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration, charge, size, and shape characteristics of peptides from their CZE analyses.
    Peirotti MB; Piaggio MV; Deiber JA
    J Sep Sci; 2008 Feb; 31(3):548-54. PubMed ID: 18266265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of background electrolyte on the estimation of protein hydrodynamic radius and net charge through capillary zone electrophoresis.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2005 Sep; 26(17):3232-46. PubMed ID: 16097025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of homopolypeptide conformational changes by the modeling of electrophoretic mobilities.
    Plasson R; Cottet H
    Anal Chem; 2005 Sep; 77(18):6047-54. PubMed ID: 16159140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic mobility equation for protein with molecular shape and charge multipole effects.
    Kim JY; Ahn SH; Kang ST; Yoon BJ
    J Colloid Interface Sci; 2006 Jul; 299(1):486-92. PubMed ID: 16494895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic strength effects on electrophoretic focusing and separations.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2010 Mar; 31(5):910-9. PubMed ID: 20191554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of acid-base dissociation constants of very weak zwitterionic heterocyclic bases by capillary zone electrophoresis.
    Ehala S; Grishina AA; Sheshenev AE; Lyapkalo IM; Kašička V
    J Chromatogr A; 2010 Dec; 1217(51):8048-53. PubMed ID: 20887995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2014 Mar; 35(5):755-61. PubMed ID: 24293200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From small charged molecules to oligomers: a semiempirical approach to the modeling of actual mobility in free solution.
    Cottet H; Gareil P
    Electrophoresis; 2000 May; 21(8):1493-504. PubMed ID: 10832879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2013 Sep; 34(18):2648-54. PubMed ID: 23712447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formation.
    Allison SA; Pei H; Baek S; Brown J; Lee MY; Nguyen V; Twahir UT; Wu H
    Electrophoresis; 2010 Mar; 31(5):920-32. PubMed ID: 20191555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration dependence of the mass fractal dimension and anomalous diffusion of vibrational energy in proteins.
    Enright MB; Yu X; Leitner DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051905. PubMed ID: 16802965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE.
    Plasson R; Vayaboury W; Giani O; Cottet H
    Electrophoresis; 2007 Oct; 28(20):3617-24. PubMed ID: 17941129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of electrokinetic and hydrodynamic parameters of proteins by modeling their electrophoretic mobilities through the electrically charged spherical soft particle.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2013 Mar; 34(5):708-15. PubMed ID: 23172316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of analytical techniques for determining protein charge.
    Filoti DI; Shire SJ; Yadav S; Laue TM
    J Pharm Sci; 2015 Jul; 104(7):2123-31. PubMed ID: 25911989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rules relating electrophoretic mobility, charge and molecular size of peptides and proteins.
    Adamson NJ; Reynolds EC
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):133-47. PubMed ID: 9392373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.