BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19569170)

  • 1. A design-of-experiments approach for the optimization and understanding of the cross-metathesis reaction of methyl ricinoleate with methyl acrylate.
    Ho TT; Jacobs T; Meier MA
    ChemSusChem; 2009; 2(8):749-54. PubMed ID: 19569170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl ricinoleate as platform chemical for simultaneous production of fine chemicals and polymer precursors.
    Dupé A; Achard M; Fischmeister C; Bruneau C
    ChemSusChem; 2012 Nov; 5(11):2249-54. PubMed ID: 23012229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea.
    Billault I; Mantle PG; Robins RJ
    J Am Chem Soc; 2004 Mar; 126(10):3250-6. PubMed ID: 15012155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Final report on the safety assessment of Ricinus Communis (Castor) Seed Oil, Hydrogenated Castor Oil, Glyceryl Ricinoleate, Glyceryl Ricinoleate SE, Ricinoleic Acid, Potassium Ricinoleate, Sodium Ricinoleate, Zinc Ricinoleate, Cetyl Ricinoleate, Ethyl Ricinoleate, Glycol Ricinoleate, Isopropyl Ricinoleate, Methyl Ricinoleate, and Octyldodecyl Ricinoleate.
    Int J Toxicol; 2007; 26 Suppl 3():31-77. PubMed ID: 18080873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis.
    Yao Q; Zhang Y
    J Am Chem Soc; 2004 Jan; 126(1):74-5. PubMed ID: 14709066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil-in-water emulsions characterization by laser granulometry and impact on γ-decalactone production in Yarrowia lipolytica.
    Gomes N; Waché Y; Teixeira JA; Belo I
    Biotechnol Lett; 2011 Aug; 33(8):1601-6. PubMed ID: 21431848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical aspects of castor oil biosynthesis.
    McKeon TA; Chen GQ; Lin JT
    Biochem Soc Trans; 2000 Dec; 28(6):972-4. PubMed ID: 11171276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach.
    Palaskar DV; Boyer A; Cloutet E; Alfos C; Cramail H
    Biomacromolecules; 2010 May; 11(5):1202-11. PubMed ID: 20402498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metathesis of fatty acid ester derivatives in 1,1-dialkyl and 1,2,3-trialkyl imidazolium type ionic liquids.
    Thomas PA; Marvey BB; Ebenso EE
    Int J Mol Sci; 2011; 12(6):3989-97. PubMed ID: 21747719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis.
    Kreye O; Kugele D; Faust L; Meier MA
    Macromol Rapid Commun; 2014 Feb; 35(3):317-22. PubMed ID: 24356926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicology and pharmacology of sodium ricinoleate.
    Burdock GA; Carabin IG; Griffiths JC
    Food Chem Toxicol; 2006 Oct; 44(10):1689-98. PubMed ID: 16831502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In an attempt to provide a user's guide to the galaxy of benzylidene, alkoxybenzylidene, and indenylidene ruthenium olefin metathesis catalysts.
    Bieniek M; Michrowska A; Usanov DL; Grela K
    Chemistry; 2008; 14(3):806-18. PubMed ID: 18064624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximization of bioconversion of castor oil into ricinoleic acid by response surface methodology.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2009 Sep; 100(18):4067-73. PubMed ID: 19419859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of ricinoleate in castor oil.
    McKeon TA; Lin JT; Stafford AE
    Adv Exp Med Biol; 1999; 464():37-47. PubMed ID: 10335384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undecylenic acid: a valuable and physiologically active renewable building block from castor oil.
    Van der Steen M; Stevens CV
    ChemSusChem; 2009; 2(8):692-713. PubMed ID: 19650106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of biodiesel production from castor oil using response surface methodology.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2009 May; 156(1-3):1-11. PubMed ID: 19089650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).
    Nie Y; Duan Y; Gong R; Yu S; Lu M; Yu F; Ji J
    Bioresour Technol; 2015 Jun; 186():334-337. PubMed ID: 25818921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of (S)-ricinoleic acid and its methyl ester with the participation of ionic liquid.
    Kula J; Bonikowski R; Szewczyk M; Ciolak K
    Chem Phys Lipids; 2014 Oct; 183():137-41. PubMed ID: 24956018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.