BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19569182)

  • 1. A fast method for large-scale de novo peptide and miniprotein structure prediction.
    Maupetit J; Derreumaux P; Tufféry P
    J Comput Chem; 2010 Mar; 31(4):726-38. PubMed ID: 19569182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEP-FOLD: an online resource for de novo peptide structure prediction.
    Maupetit J; Derreumaux P; Tuffery P
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W498-503. PubMed ID: 19433514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hidden markov model derived structural alphabet for proteins.
    Camproux AC; Gautier R; Tufféry P
    J Mol Biol; 2004 Jun; 339(3):591-605. PubMed ID: 15147844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure estimation from minimal restraints using Rosetta.
    Rohl CA
    Methods Enzymol; 2005; 394():244-60. PubMed ID: 15808223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing physical energy functions for protein folding.
    Fujitsuka Y; Takada S; Luthey-Schulten ZA; Wolynes PG
    Proteins; 2004 Jan; 54(1):88-103. PubMed ID: 14705026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us?
    Zagrovic B; van Gunsteren WF
    Proteins; 2006 Apr; 63(1):210-8. PubMed ID: 16425239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction.
    Shen Y; Maupetit J; Derreumaux P; Tufféry P
    J Chem Theory Comput; 2014 Oct; 10(10):4745-58. PubMed ID: 26588162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides.
    Thangudu RR; Vinayagam A; Pugalenthi G; Manonmani A; Offmann B; Sowdhamini R
    Proteins; 2005 Mar; 58(4):866-79. PubMed ID: 15645448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational landscape of the HIV-V3 hairpin loop from all-atom free-energy simulations.
    Verma A; Wenzel W
    J Chem Phys; 2008 Mar; 128(10):105103. PubMed ID: 18345927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining local-structure, fold-recognition, and new fold methods for protein structure prediction.
    Karplus K; Karchin R; Draper J; Casper J; Mandel-Gutfreund Y; Diekhans M; Hughey R
    Proteins; 2003; 53 Suppl 6():491-6. PubMed ID: 14579338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPICKER: a clustering approach to identify near-native protein folds.
    Zhang Y; Skolnick J
    J Comput Chem; 2004 Apr; 25(6):865-71. PubMed ID: 15011258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.