BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19569184)

  • 1. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation model induced structural changes in peptides. A quantum chemical study on Ramachandran surfaces and conformers of alanine diamide using the polarizable continuum model.
    Hudáky I; Hudáky P; Perczel A
    J Comput Chem; 2004 Sep; 25(12):1522-31. PubMed ID: 15224396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory.
    Chiba M; Fedorov DG; Kitaura K
    J Comput Chem; 2008 Dec; 29(16):2667-76. PubMed ID: 18484637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time-dependent density functional theory.
    Mennucci B; Cappelli C; Guido CA; Cammi R; Tomasi J
    J Phys Chem A; 2009 Apr; 113(13):3009-20. PubMed ID: 19226132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.
    Li H; Gordon MS
    J Chem Phys; 2007 Mar; 126(12):124112. PubMed ID: 17411113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy decomposition analysis in solution based on the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2012 Jan; 116(1):704-19. PubMed ID: 22098297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy.
    He X; Zhang JZ
    J Chem Phys; 2006 May; 124(18):184703. PubMed ID: 16709127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of succinylacetone, an unsymmetrical beta-diketone, as studied by 13C NMR and GIAO-DFT calculations.
    Bal D; Kraska-Dziadecka A; Gryff-Keller A
    J Org Chem; 2009 Nov; 74(22):8604-9. PubMed ID: 19839628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site specificity of the (alpha)C--H bond dissociation energy for a naturally occurring beta-hairpin peptide-An ab initio study.
    Cheng WC; Jang S; Wu CC; Lin RJ; Lu HF; Li FY
    J Comput Chem; 2009 Feb; 30(3):407-14. PubMed ID: 18629808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvatochromic shifts of uracil and cytosine using a combined multireference configuration interaction/molecular dynamics approach and the fragment molecular orbital method.
    Kistler KA; Matsika S
    J Phys Chem A; 2009 Nov; 113(45):12396-403. PubMed ID: 19505083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation.
    Li H; Jensen JH
    J Comput Chem; 2004 Sep; 25(12):1449-62. PubMed ID: 15224389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.