BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19569201)

  • 1. Identification of small molecule aggregators from large compound libraries by support vector machines.
    Rao H; Li Z; Li X; Ma X; Ung C; Li H; Liu X; Chen Y
    J Comput Chem; 2010 Mar; 31(4):752-63. PubMed ID: 19569201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual screening of Abl inhibitors from large compound libraries by support vector machines.
    Liu XH; Ma XH; Tan CY; Jiang YY; Go ML; Low BC; Chen YZ
    J Chem Inf Model; 2009 Sep; 49(9):2101-10. PubMed ID: 19689138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds.
    Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ
    J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data mining PubChem using a support vector machine with the Signature molecular descriptor: classification of factor XIa inhibitors.
    Weis DC; Visco DP; Faulon JL
    J Mol Graph Model; 2008 Nov; 27(4):466-75. PubMed ID: 18829357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries.
    Kumar P; Ma X; Liu X; Jia J; Bucong H; Xue Y; Li ZR; Yang SY; Wei YQ; Chen YZ
    J Comput Aided Mol Des; 2011 May; 25(5):455-67. PubMed ID: 21556903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Novel Type ZBGs and Nonhydroxamate HDAC Inhibitors Through a SVM Based Virtual Screening Approach.
    Liu XH; Song HY; Zhang JX; Han BC; Wei XN; Ma XH; Cui WK; Chen YZ
    Mol Inform; 2010 May; 29(5):407-20. PubMed ID: 27463196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of factor Xa inhibitors by machine learning methods.
    Lin HH; Han LY; Yap CW; Xue Y; Liu XH; Zhu F; Chen YZ
    J Mol Graph Model; 2007 Sep; 26(2):505-18. PubMed ID: 17418603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU accelerated support vector machines for mining high-throughput screening data.
    Liao Q; Wang J; Webster Y; Watson IA
    J Chem Inf Model; 2009 Dec; 49(12):2718-25. PubMed ID: 19961205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor.
    Han LY; Ma XH; Lin HH; Jia J; Zhu F; Xue Y; Li ZR; Cao ZW; Ji ZL; Chen YZ
    J Mol Graph Model; 2008 Jun; 26(8):1276-86. PubMed ID: 18218332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two criteria for model selection in multiclass support vector machines.
    Wang L; Xue P; Chan KL
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1432-48. PubMed ID: 19022717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach.
    Hua S; Sun Z
    J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.
    Bandyopadhyay S; Mitra R
    Bioinformatics; 2009 Oct; 25(20):2625-31. PubMed ID: 19692556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and experimental test of support vector machines virtual screening method for searching Src inhibitors from large compound libraries.
    Han B; Ma X; Zhao R; Zhang J; Wei X; Liu X; Liu X; Zhang C; Tan C; Jiang Y; Chen Y
    Chem Cent J; 2012 Nov; 6(1):139. PubMed ID: 23173901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method.
    Ma CY; Yang SY; Zhang H; Xiang ML; Huang Q; Wei YQ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):677-82. PubMed ID: 18455346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of support vector machine-based ranking strategies to search for target-selective compounds.
    Wassermann AM; Geppert H; Bajorath J
    Methods Mol Biol; 2011; 672():517-30. PubMed ID: 20838983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potency-directed similarity searching using support vector machines.
    Wassermann AM; Heikamp K; Bajorath J
    Chem Biol Drug Des; 2011 Jan; 77(1):30-8. PubMed ID: 21114788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.