BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19569216)

  • 1. Biodegradable nitric oxide-releasing poly(diol citrate) elastomers.
    Zhao H; Serrano MC; Popowich DA; Kibbe MR; Ameer GA
    J Biomed Mater Res A; 2010 Apr; 93(1):356-63. PubMed ID: 19569216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers.
    Yang J; Webb AR; Pickerill SJ; Hageman G; Ameer GA
    Biomaterials; 2006 Mar; 27(9):1889-98. PubMed ID: 16290904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering.
    Li J; Zheng W; Pan P; Sun X; Zhang Y
    Biomed Mater Eng; 2014; 24(1):619-24. PubMed ID: 24211946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable network elastomeric polyesters from multifunctional aliphatic carboxylic acids and poly(epsilon-caprolactone) diols.
    Nagata M; Kato K; Sakai W; Tsutsumi N
    Macromol Biosci; 2006 May; 6(5):333-9. PubMed ID: 16676379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents.
    Serrano MC; Gutiérrez MC; Jiménez R; Ferrer ML; del Monte F
    Chem Commun (Camb); 2012 Jan; 48(4):579-81. PubMed ID: 22109350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of a photo-cross-linked biodegradable elastomer.
    Amsden BG; Misra G; Gu F; Younes HM
    Biomacromolecules; 2004; 5(6):2479-86. PubMed ID: 15530066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Poly(1,8-octanediol-
    Yu L; He W; Peters EB; Ledford BT; Tsihlis ND; Kibbe MR
    ACS Appl Bio Mater; 2020 Apr; 3(4):2150-2159. PubMed ID: 35025266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citric acid-based elastomers provide a biocompatible interface for vascular grafts.
    Kibbe MR; Martinez J; Popowich DA; Kapadia MR; Ahanchi SS; Aalami OO; Jiang Q; Webb AR; Yang J; Carroll T; Ameer GA
    J Biomed Mater Res A; 2010 Apr; 93(1):314-24. PubMed ID: 19569210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast biocompatibility on poly(octanediol citrate)/sebacate elastomers with controlled wettability.
    Djordjevic I; Szili EJ; Choudhury NR; Dutta N; Steele DA; Kumar S
    J Biomater Sci Polym Ed; 2010; 21(8-9):1039-50. PubMed ID: 20507707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.
    Fang J; Ye SH; Shankarraman V; Huang Y; Mo X; Wagner WR
    Acta Biomater; 2014 Nov; 10(11):4639-4649. PubMed ID: 25132273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymethacrylate-based nitric oxide donors with pendant N-diazeniumdiolated alkyldiamine moieties: synthesis, characterization, and preparation of nitric oxide releasing polymeric coatings.
    Zhou Z; Meyerhoff ME
    Biomacromolecules; 2005; 6(2):780-9. PubMed ID: 15762642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyoctanediol citrate/sebacate bioelastomer films: surface morphology, chemistry and functionality.
    Djordjevic I; Choudhury NR; Dutta NK; Kumar S; Szili EJ; Steele DA
    J Biomater Sci Polym Ed; 2010; 21(2):237-51. PubMed ID: 20092687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coating small-diameter ePTFE vascular grafts with tunable poly(diol-co-citrate-co-ascorbate) elastomers to reduce neointimal hyperplasia.
    Yu L; Newton ER; Gillis DC; Sun K; Cooley BC; Keith AN; Sheiko SS; Tsihlis ND; Kibbe MR
    Biomater Sci; 2021 Aug; 9(15):5160-5174. PubMed ID: 34312627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and in vitro cell compatibility study of a poly(amic acid) graft/cross-linked poly(vinyl alcohol) hydrogel.
    Padavan DT; Hamilton AM; Millon LE; Boughner DR; Wan W
    Acta Biomater; 2011 Jan; 7(1):258-67. PubMed ID: 20688197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors.
    Olson DA; Gratton SE; DeSimone JM; Sheares VV
    J Am Chem Soc; 2006 Oct; 128(41):13625-33. PubMed ID: 17031977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained transgene expression via citric acid-based polyester elastomers.
    Zhang XQ; Tang H; Hoshi R; De Laporte L; Qiu H; Xu X; Shea LD; Ameer GA
    Biomaterials; 2009 May; 30(13):2632-41. PubMed ID: 19200593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering.
    Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G
    J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.