These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19569223)

  • 1. A novel small animal model for biocompatibility assessment of polymeric materials for use in prosthetic heart valves.
    Wang Q; McGoron AJ; Pinchuk L; Schoephoerster RT
    J Biomed Mater Res A; 2010 May; 93(2):442-53. PubMed ID: 19569223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo efficacy of silver-coated (Silzone) infection-resistant polyester fabric against a biofilm-producing bacteria, Staphylococcus epidermidis.
    Illingworth BL; Tweden K; Schroeder RF; Cameron JD
    J Heart Valve Dis; 1998 Sep; 7(5):524-30. PubMed ID: 9793851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of silver-modified polyester for antimicrobial protection of prosthetic valves.
    Tweden KS; Cameron JD; Razzouk AJ; Holmberg WR; Kelly SJ
    J Heart Valve Dis; 1997 Sep; 6(5):553-61. PubMed ID: 9330181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phospholipid-modified polystyrene-polyisobutylene-polystyrene (SIBS) triblock polymer for enhanced hemocompatibility and potential use in artificial heart valves.
    Duraiswamy N; Choksi TD; Pinchuk L; Schoephoerster RT
    J Biomater Appl; 2009 Jan; 23(4):367-79. PubMed ID: 18697881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve.
    Wang Q; McGoron AJ; Bianco R; Kato Y; Pinchuk L; Schoephoerster RT
    J Heart Valve Dis; 2010 Jul; 19(4):499-505. PubMed ID: 20845899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomatrix/polymer composite material for heart valve tissue engineering.
    Stamm C; Khosravi A; Grabow N; Schmohl K; Treckmann N; Drechsel A; Nan M; Schmitz KP; Haubold A; Steinhoff G
    Ann Thorac Surg; 2004 Dec; 78(6):2084-92; discussion 2092-3. PubMed ID: 15561041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes.
    Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z
    J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS").
    Pinchuk L; Wilson GJ; Barry JJ; Schoephoerster RT; Parel JM; Kennedy JP
    Biomaterials; 2008 Feb; 29(4):448-60. PubMed ID: 17980425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering.
    Grabow N; Schmohl K; Khosravi A; Philipp M; Scharfschwerdt M; Graf B; Stamm C; Haubold A; Schmitz KP; Steinhoff G
    Artif Organs; 2004 Nov; 28(11):971-9. PubMed ID: 15504112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on decellularized porcine aortic valve/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) hybrid heart valve in sheep model.
    Wu S; Liu YL; Cui B; Qu XH; Chen GQ
    Artif Organs; 2007 Sep; 31(9):689-97. PubMed ID: 17725696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk fibroin immobilization on poly(ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture.
    Liang M; Yao J; Chen X; Huang L; Shao Z
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1409-16. PubMed ID: 23827589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Sep; 15(5):710-5. PubMed ID: 17044379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Jul; 15(4):557-62. PubMed ID: 16901054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of polyethylene terephthalate (Dacron) via denier reduction: effects on material tensile strength, weight, and protein binding capabilities.
    Phaneuf MD; Quist WC; Bide MJ; LoGerfo FW
    J Appl Biomater; 1995; 6(4):289-99. PubMed ID: 8589514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of plasma modification on biological properties of polyethylene terephthalate foil].
    Staniszewska-Kuś J; Paluch D; Szymonowicz M; Pigłowski J; Gancarz I
    Polim Med; 1994; 24(1-2):3-19. PubMed ID: 7971532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.