BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

746 related articles for article (PubMed ID: 19569710)

  • 1. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.
    Peet J; Heeger AJ; Bazan GC
    Acc Chem Res; 2009 Nov; 42(11):1700-8. PubMed ID: 19569710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconducting polymers: the Third Generation.
    Heeger AJ
    Chem Soc Rev; 2010 Jul; 39(7):2354-71. PubMed ID: 20571667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing additives for improved efficiency from bulk heterojunction solar cells.
    Lee JK; Ma WL; Brabec CJ; Yuen J; Moon JS; Kim JY; Lee K; Bazan GC; Heeger AJ
    J Am Chem Soc; 2008 Mar; 130(11):3619-23. PubMed ID: 18288842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.
    Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX
    J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.
    Coughlin JE; Henson ZB; Welch GC; Bazan GC
    Acc Chem Res; 2014 Jan; 47(1):257-70. PubMed ID: 23984626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices.
    Chen J; Cao Y
    Acc Chem Res; 2009 Nov; 42(11):1709-18. PubMed ID: 19572607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical energy conversion: from molecular dyads to solar cells.
    Durrant JR; Haque SA; Palomares E
    Chem Commun (Camb); 2006 Aug; (31):3279-89. PubMed ID: 16883412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols.
    Peet J; Kim JY; Coates NE; Ma WL; Moses D; Heeger AJ; Bazan GC
    Nat Mater; 2007 Jul; 6(7):497-500. PubMed ID: 17529968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.
    Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF
    Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s.
    Wong WY; Wang XZ; He Z; Chan KK; Djurisić AB; Cheung KY; Yip CT; Ng AM; Xi YY; Mak CS; Chan WK
    J Am Chem Soc; 2007 Nov; 129(46):14372-80. PubMed ID: 17967015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells.
    He M; Han W; Ge J; Yu W; Yang Y; Qiu F; Lin Z
    Nanoscale; 2011 Aug; 3(8):3159-63. PubMed ID: 21720620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.