These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19570637)

  • 1. Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences.
    Stroman PW
    Magn Reson Imaging; 2009 Dec; 27(10):1333-46. PubMed ID: 19570637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ascending input to the midbrain periaqueductal gray of the primate.
    Mantyh PW
    J Comp Neurol; 1982 Oct; 211(1):50-64. PubMed ID: 7174883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states.
    Bee LA; Dickenson AH
    Neuroscience; 2007 Jul; 147(3):786-93. PubMed ID: 17570596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transneuronal labeling of neurons in the adult rat brainstem and spinal cord after injection of pseudorabies virus into the urethra.
    Vizzard MA; Erickson VL; Card JP; Roppolo JR; de Groat WC
    J Comp Neurol; 1995 May; 355(4):629-40. PubMed ID: 7636036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying functional MRI to the spinal cord and brainstem.
    Leitch JK; Figley CR; Stroman PW
    Magn Reson Imaging; 2010 Oct; 28(8):1225-33. PubMed ID: 20409662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat.
    Pertovaara A; Kontinen VK; Kalso EA
    Exp Neurol; 1997 Oct; 147(2):428-36. PubMed ID: 9344567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative comparison of BOLD fMRI responses to noxious and innocuous stimuli in the human spinal cord.
    Summers PE; Ferraro D; Duzzi D; Lui F; Iannetti GD; Porro CA
    Neuroimage; 2010 May; 50(4):1408-15. PubMed ID: 20096788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study.
    Cahill CM; Stroman PW
    Magn Reson Imaging; 2011 Apr; 29(3):342-52. PubMed ID: 21247717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation.
    Basbaum AI; Fields HL
    J Comp Neurol; 1979 Oct; 187(3):513-31. PubMed ID: 489790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of attention focus on neural activity in the human spinal cord during thermal sensory stimulation.
    Stroman PW; Coe BC; Munoz DP
    Magn Reson Imaging; 2011 Jan; 29(1):9-18. PubMed ID: 20850240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal and supraspinal processing of thermal stimuli: an fMRI study.
    Rempe T; Wolff S; Riedel C; Baron R; Stroman PW; Jansen O; Gierthmühlen J
    J Magn Reson Imaging; 2015 Apr; 41(4):1046-55. PubMed ID: 24737401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of nucleus caudalis and spinal cord to brainstem and diencephalon in the hedgehog (Erinaceus europaeus and Paraechinus aethiopicus): a degeneration study.
    Ring G; Ganchrow D
    J Comp Neurol; 1983 May; 216(2):132-51. PubMed ID: 6863599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI.
    Endo T; Spenger C; Westman E; Tominaga T; Olson L
    Exp Neurol; 2008 Jan; 209(1):155-60. PubMed ID: 17988666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.
    Sukiasyan N; Hultborn H; Zhang M
    Neuroscience; 2009 Mar; 159(1):217-35. PubMed ID: 19136044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem.
    Stroman PW; Figley CR; Cahill CM
    Magn Reson Imaging; 2008 Jul; 26(6):809-14. PubMed ID: 18499380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Descending pathways modulating the spinal circuitry for ejaculation: effects of chronic spinal cord injury.
    Johnson RD
    Prog Brain Res; 2006; 152():415-26. PubMed ID: 16198717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis.
    Agosta F; Valsasina P; Caputo D; Stroman PW; Filippi M
    Neuroimage; 2008 Feb; 39(4):1542-8. PubMed ID: 18061484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat.
    Burstein R; Potrebic S
    J Comp Neurol; 1993 Sep; 335(4):469-85. PubMed ID: 8227531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tactile sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging.
    Ghazni NF; Cahill CM; Stroman PW
    AJNR Am J Neuroradiol; 2010 Apr; 31(4):661-7. PubMed ID: 20019102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injury alters intrinsic functional connectivity within the primate spinal cord.
    Chen LM; Mishra A; Yang PF; Wang F; Gore JC
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5991-6. PubMed ID: 25902510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.