BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19570857)

  • 1. Functional analysis of N-terminal residues of ty1 integrase.
    Moore SP; Garfinkel DJ
    J Virol; 2009 Sep; 83(18):9502-11. PubMed ID: 19570857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invading the yeast nucleus: a nuclear localization signal at the C terminus of Ty1 integrase is required for transposition in vivo.
    Kenna MA; Brachmann CB; Devine SE; Boeke JD
    Mol Cell Biol; 1998 Feb; 18(2):1115-24. PubMed ID: 9448009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ty1 integrase is composed of an active N-terminal domain and a large disordered C-terminal module dispensable for its activity in vitro.
    Nguyen PQ; Conesa C; Rabut E; Bragagnolo G; Gouzerh C; Fernández-Tornero C; Lesage P; Reguera J; Acker J
    J Biol Chem; 2021 Oct; 297(4):101093. PubMed ID: 34416236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ty1 integrase nuclear localization signal required for retrotransposition.
    Moore SP; Rinckel LA; Garfinkel DJ
    Mol Cell Biol; 1998 Feb; 18(2):1105-14. PubMed ID: 9448008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of integrase in reverse transcription of the Saccharomyces cerevisiae retrotransposon Ty1.
    Wilhelm M; Wilhelm FX
    Eukaryot Cell; 2005 Jun; 4(6):1057-65. PubMed ID: 15947198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations.
    Vincent KA; Ellison V; Chow SA; Brown PO
    J Virol; 1993 Jan; 67(1):425-37. PubMed ID: 8416376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correct integration of model substrates by Ty1 integrase.
    Moore SP; Garfinkel DJ
    J Virol; 2000 Dec; 74(24):11522-30. PubMed ID: 11090149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of a homologous recombination assay revealed amino acid residues in an LTR-retrotransposon that were critical for integration.
    Atwood A; Choi J; Levin HL
    J Virol; 1998 Feb; 72(2):1324-33. PubMed ID: 9445033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes.
    Cheung S; Ma L; Chan PH; Hu HL; Mayor T; Chen HT; Measday V
    J Biol Chem; 2016 Mar; 291(12):6396-411. PubMed ID: 26797132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element.
    Wilhelm FX; Wilhelm M; Gabriel A
    Cytogenet Genome Res; 2005; 110(1-4):269-87. PubMed ID: 16093680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ty3 integrase mutants defective in reverse transcription or 3'-end processing of extrachromosomal Ty3 DNA.
    Kirchner J; Sandmeyer SB
    J Virol; 1996 Jul; 70(7):4737-47. PubMed ID: 8676501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities.
    Wilhelm M; Boutabout M; Wilhelm FX
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitination of non-lysine residues in the retroviral integrase.
    Wang Z; Hou X; Wang Y; Xu A; Cao W; Liao M; Zhang R; Tang J
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):57-62. PubMed ID: 29054407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ty3 integrase is required for initiation of reverse transcription.
    Nymark-McMahon MH; Beliakova-Bethell NS; Darlix JL; Le Grice SF; Sandmeyer SB
    J Virol; 2002 Mar; 76(6):2804-16. PubMed ID: 11861848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition.
    Guan R; Aiyer S; Cote ML; Xiao R; Jiang M; Acton TB; Roth MJ; Montelione GT
    Proteins; 2017 Apr; 85(4):647-656. PubMed ID: 28066922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc.
    Eijkelenboom AP; van den Ent FM; Vos A; Doreleijers JF; Hård K; Tullius TD; Plasterk RH; Kaptein R; Boelens R
    Curr Biol; 1997 Oct; 7(10):739-46. PubMed ID: 9368756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient homologous recombination of Ty1 element cDNA when integration is blocked.
    Sharon G; Burkett TJ; Garfinkel DJ
    Mol Cell Biol; 1994 Oct; 14(10):6540-51. PubMed ID: 7523854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrase C-terminal residues determine the efficiency of feline foamy viral DNA integration.
    Kim J; Lee GE; Lochelt M; Shin CG
    Virology; 2018 Jan; 514():50-56. PubMed ID: 29128756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interactions of the HHCC domain of moloney murine leukemia virus integrase revealed by nonoverlapping complementation and zinc-dependent dimerization.
    Yang F; Leon O; Greenfield NJ; Roth MJ
    J Virol; 1999 Mar; 73(3):1809-17. PubMed ID: 9971758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn(2+) binding properties of single-point mutants of the C-terminal zinc finger of the HIV-1 nucleocapsid protein: evidence of a critical role of cysteine 49 in Zn(2+) dissociation.
    Bombarda E; Cherradi H; Morellet N; Roques BP; Mély Y
    Biochemistry; 2002 Apr; 41(13):4312-20. PubMed ID: 11914077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.