These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19570997)

  • 1. The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes.
    Glas AF; Maul MJ; Cryle M; Barends TR; Schneider S; Kaya E; Schlichting I; Carell T
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11540-5. PubMed ID: 19570997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.
    Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K
    J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key interactions with deazariboflavin cofactor for light-driven energy transfer in Xenopus (6-4) photolyase.
    Morimoto A; Hosokawa Y; Miyamoto H; Verma RK; Iwai S; Sato R; Yamamoto J
    Photochem Photobiol Sci; 2021 Jul; 20(7):875-887. PubMed ID: 34120300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA apophotolyase from Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction.
    Kort R; Komori H; Adachi S; Miki K; Eker A
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1205-13. PubMed ID: 15213381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of FAD and 8-hydroxy-5-deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase.
    Malhotra K; Kim ST; Walsh C; Sancar A
    J Biol Chem; 1992 Aug; 267(22):15406-11. PubMed ID: 1639785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convenient synthesis of deazaflavin cofactor FO and its activity in F(420)-dependent NADP reductase.
    Hossain MS; Le CQ; Joseph E; Nguyen TQ; Johnson-Winters K; Foss FW
    Org Biomol Chem; 2015 May; 13(18):5082-5. PubMed ID: 25827330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria.
    Selengut JD; Haft DH
    J Bacteriol; 2010 Nov; 192(21):5788-98. PubMed ID: 20675471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis.
    Grochowski LL; Xu H; White RH
    Biochemistry; 2008 Mar; 47(9):3033-7. PubMed ID: 18260642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.
    Greening C; Ahmed FH; Mohamed AE; Lee BM; Pandey G; Warden AC; Scott C; Oakeshott JG; Taylor MC; Jackson CJ
    Microbiol Mol Biol Rev; 2016 Jun; 80(2):451-93. PubMed ID: 27122598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and characterization of an F
    Nguyen QT; Trinco G; Binda C; Mattevi A; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2831-2842. PubMed ID: 27966048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome.
    Oldemeyer S; Haddad AZ; Fleming GR
    Biochemistry; 2020 Feb; 59(4):594-604. PubMed ID: 31846308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A putative blue-light receptor from Drosophila melanogaster.
    Okano S; Kanno S; Takao M; Eker AP; Isono K; Tsukahara Y; Yasui A
    Photochem Photobiol; 1999 Jan; 69(1):108-13. PubMed ID: 10063806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of an Anacystis nidulans photolyase gene in Escherichia coli; functional complementation and modified action spectrum of photoreactivation.
    Takao M; Oikawa A; Eker AP; Yasui A
    Photochem Photobiol; 1989 Nov; 50(5):633-7. PubMed ID: 2516329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of Drosophila melanogaster photolyase.
    Kim ST; Malhotra K; Ryo H; Sancar A; Todo T
    Mutat Res; 1996 Jun; 363(2):97-104. PubMed ID: 8676930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced DNA repair by DNA photolyase bearing an artificial light-harvesting chromophore.
    Terai Y; Sato R; Matsumura R; Iwai S; Yamamoto J
    Nucleic Acids Res; 2020 Oct; 48(18):10076-10086. PubMed ID: 32901252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics.
    Graham DE; White RH
    Nat Prod Rep; 2002 Apr; 19(2):133-47. PubMed ID: 12013276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro).
    Fiebig K; Friedrich B
    Eur J Biochem; 1989 Sep; 184(1):79-88. PubMed ID: 2550229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC.
    Wuebbens MM; Liu MT; Rajagopalan K; Schindelin H
    Structure; 2000 Jul; 8(7):709-18. PubMed ID: 10903949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase.
    Weber S
    Biochim Biophys Acta; 2005 Feb; 1707(1):1-23. PubMed ID: 15721603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation of the nickel-containing porphinoid cofactor F(430). Comparison of the free cofactor in the (+)1, (+)2 and (+)3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms.
    Duin EC; Signor L; Piskorski R; Mahlert F; Clay MD; Goenrich M; Thauer RK; Jaun B; Johnson MK
    J Biol Inorg Chem; 2004 Jul; 9(5):563-76. PubMed ID: 15160314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.