These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19571132)

  • 1. Multisensory integration in dynamical behaviors: maximum likelihood estimation across bimanual skill learning.
    Ronsse R; Miall RC; Swinnen SP
    J Neurosci; 2009 Jul; 29(26):8419-28. PubMed ID: 19571132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divisively Normalized Integration of Multisensory Error Information Develops Motor Memories Specific to Vision and Proprioception.
    Hayashi T; Kato Y; Nozaki D
    J Neurosci; 2020 Feb; 40(7):1560-1570. PubMed ID: 31924610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.
    Debats NB; Ernst MO; Heuer H
    J Neurophysiol; 2017 Apr; 117(4):1569-1580. PubMed ID: 28100656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible strategies for sensory integration during motor planning.
    Sober SJ; Sabes PN
    Nat Neurosci; 2005 Apr; 8(4):490-7. PubMed ID: 15793578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual differences in proprioception predict the extent of implicit sensorimotor adaptation.
    Tsay JS; Kim HE; Parvin DE; Stover AR; Ivry RB
    J Neurophysiol; 2021 Apr; 125(4):1307-1321. PubMed ID: 33656948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of visuomotor adaptation on proprioceptive localization: the contributions of perceptual and motor changes.
    Clayton HA; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jul; 232(7):2073-86. PubMed ID: 24623356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination.
    Zhu Q; Mirich T; Huang S; Snapp-Childs W; Bingham GP
    Atten Percept Psychophys; 2017 Aug; 79(6):1830-1840. PubMed ID: 28508115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the cross-sensory error signal in visuomotor adaptation.
    Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2013 Jul; 228(3):313-25. PubMed ID: 23708802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual-haptic cue integration with spatial and temporal disparity during pointing movements.
    Serwe S; Körding KP; Trommershäuser J
    Exp Brain Res; 2011 Apr; 210(1):67-80. PubMed ID: 21374079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of visual feedback integration differs between dominant and non-dominant arms during a reaching task.
    Apker GA; Dyson K; Frantz G; Buneo CA
    Exp Brain Res; 2015 Jan; 233(1):317-27. PubMed ID: 25300962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of proprioceptive and visual feedback during online control of reaching.
    Kasuga S; Crevecoeur F; Cross KP; Balalaie P; Scott SH
    J Neurophysiol; 2022 Feb; 127(2):354-372. PubMed ID: 34907796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line corrections for visuomotor errors.
    Shabbott BA; Sainburg RL
    Exp Brain Res; 2009 May; 195(1):59-72. PubMed ID: 19288090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.
    Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Development of Bimanual Coordination Across Toddlerhood.
    Brakke K; Pacheco MM
    Monogr Soc Res Child Dev; 2019 Jun; 84(2):7-147. PubMed ID: 31162687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feedback reduces bimanual coupling of movement amplitudes, but not of directions.
    Cardoso de Oliveira S; Barthélémy S
    Exp Brain Res; 2005 Mar; 162(1):78-88. PubMed ID: 15772872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory weighting of force and position feedback in human motor control tasks.
    Mugge W; Schuurmans J; Schouten AC; van der Helm FC
    J Neurosci; 2009 Apr; 29(17):5476-82. PubMed ID: 19403815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to proprioceptive targets following visuomotor adaptation.
    Flannigan JC; Posthuma RJ; Lombardo JN; Murray C; Cressman EK
    Exp Brain Res; 2018 Feb; 236(2):419-432. PubMed ID: 29209829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.