These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19571308)

  • 1. Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia.
    Wroblewski T; Caldwell KS; Piskurewicz U; Cavanaugh KA; Xu H; Kozik A; Ochoa O; McHale LK; Lahre K; Jelenska J; Castillo JA; Blumenthal D; Vinatzer BA; Greenberg JT; Michelmore RW
    Plant Physiol; 2009 Aug; 150(4):1733-49. PubMed ID: 19571308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato.
    Lin NC; Martin GB
    Mol Plant Microbe Interact; 2007 Jul; 20(7):806-15. PubMed ID: 17601168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two virulence determinants of type III effector AvrPto are functionally conserved in diverse Pseudomonas syringae pathovars.
    Nguyen HP; Yeam I; Angot A; Martin GB
    New Phytol; 2010 Sep; 187(4):969-982. PubMed ID: 20122130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis.
    Jacobs JM; Milling A; Mitra RM; Hogan CS; Ailloud F; Prior P; Allen C
    mBio; 2013 Nov; 4(6):e00875-13. PubMed ID: 24281716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.
    Lin NC; Abramovitch RB; Kim YJ; Martin GB
    Appl Environ Microbiol; 2006 Jan; 72(1):702-12. PubMed ID: 16391110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection.
    Henry E; Toruño TY; Jauneau A; Deslandes L; Coaker G
    Plant Cell; 2017 Jul; 29(7):1555-1570. PubMed ID: 28600390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions.
    Cunnac S; Lindeberg M; Collmer A
    Curr Opin Microbiol; 2009 Feb; 12(1):53-60. PubMed ID: 19168384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants.
    Deng WL; Preston G; Collmer A; Chang CJ; Huang HC
    J Bacteriol; 1998 Sep; 180(17):4523-31. PubMed ID: 9721291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant.
    Zumaquero A; Macho AP; Rufián JS; Beuzón CR
    J Bacteriol; 2010 Sep; 192(17):4474-88. PubMed ID: 20601478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a.
    Deng WL; Rehm AH; Charkowski AO; Rojas CM; Collmer A
    J Bacteriol; 2003 Apr; 185(8):2592-602. PubMed ID: 12670984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of Pseudomonas syringae host specificity and type III effector repertoires.
    Lindeberg M; Cunnac S; Collmer A
    Mol Plant Pathol; 2009 Nov; 10(6):767-75. PubMed ID: 19849783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas savastanoi pv. savastanoi: some like it knot.
    Ramos C; Matas IM; Bardaji L; Aragón IM; Murillo J
    Mol Plant Pathol; 2012 Dec; 13(9):998-1009. PubMed ID: 22805238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pseudomonas syringae pv. tomato DC3000 Hrp (Type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato.
    Fouts DE; Badel JL; Ramos AR; Rapp RA; Collmer A
    Mol Plant Microbe Interact; 2003 Jan; 16(1):43-52. PubMed ID: 12580281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots.
    Sarris PF; Trantas EA; Baltrus DA; Bull CT; Wechter WP; Yan S; Ververidis F; Almeida NF; Jones CD; Dangl JL; Panopoulos NJ; Vinatzer BA; Goumas DE
    PLoS One; 2013; 8(3):e59366. PubMed ID: 23555661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.
    Aung K; Xin X; Mecey C; He SY
    Methods Mol Biol; 2017; 1531():141-153. PubMed ID: 27837488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host Range Determinants of
    Moreno-Pérez A; Pintado A; Murillo J; Caballo-Ponce E; Tegli S; Moretti C; Rodríguez-Palenzuela P; Ramos C
    Front Plant Sci; 2020; 11():973. PubMed ID: 32714356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas Type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and tomato.
    Kang L; Tang X; Mysore KS
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1328-36. PubMed ID: 15597738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate.
    Charkowski AO; Alfano JR; Preston G; Yuan J; He SY; Collmer A
    J Bacteriol; 1998 Oct; 180(19):5211-7. PubMed ID: 9748456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants.
    Alfano JR; Charkowski AO; Deng WL; Badel JL; Petnicki-Ocwieja T; van Dijk K; Collmer A
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4856-61. PubMed ID: 10781092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.
    Jacobs JM; Babujee L; Meng F; Milling A; Allen C
    mBio; 2012; 3(4):. PubMed ID: 22807564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.