BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19571320)

  • 1. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair.
    Fernandes MS; Reddy MM; Gonneville JR; DeRoo SC; Podar K; Griffin JD; Weinstock DM; Sattler M
    Blood; 2009 Aug; 114(9):1813-9. PubMed ID: 19571320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance.
    Fitzgerald DM; Hastings PJ; Rosenberg SM
    Annu Rev Cancer Biol; 2017 Mar; 1():119-140. PubMed ID: 29399660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Insights into RAD52's Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies.
    Balboni B; Rinaldi F; Previtali V; Ciamarone A; Girotto S; Cavalli A
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wee1 promotes cell proliferation and imatinib resistance in chronic myeloid leukemia via regulating DNA damage repair dependent on ATM-γH2AX-MDC1.
    Zeng F; Peng Y; Qin Y; Wang J; Jiang G; Feng W; Yuan Y
    Cell Commun Signal; 2022 Dec; 20(1):199. PubMed ID: 36575478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic myeloid leukemia (CML) evolves from Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) with unexpected frequency.
    Hochman MJ; Smith BD; Karantanos T; Braunstein EM; Gojo I; Jain T; Streiff MB; Moliterno AR; DeZern AE
    Int J Hematol; 2023 Mar; 117(3):456-462. PubMed ID: 36181657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade.
    Dey D; Hasan MM; Biswas P; Papadakos SP; Rayan RA; Tasnim S; Bilal M; Islam MJ; Arshe FA; Arshad EM; Farzana M; Rahaman TI; Baral SK; Paul P; Bibi S; Rahman MA; Kim B
    Front Oncol; 2022; 12():899009. PubMed ID: 35719997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Tyrosine Kinase Inhibitors to Target Chronic Myeloid Leukemia.
    Ciaffaglione V; Consoli V; Intagliata S; Marrazzo A; Romeo G; Pittalà V; Greish K; Vanella L; Floresta G; Rescifina A; Salerno L; Sorrenti V
    Molecules; 2022 May; 27(10):. PubMed ID: 35630697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine kinase inhibitors protect the salivary gland from radiation damage by increasing DNA double-strand break repair.
    Affandi T; Ohm AM; Gaillard D; Haas A; Reyland ME
    J Biol Chem; 2021; 296():100401. PubMed ID: 33571522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of DNA Damage Response in Suppressing Malignant Progression of Chronic Myeloid Leukemia and Polycythemia Vera: Impact of Different Oncogenes.
    Stetka J; Gursky J; Liñan Velasquez J; Mojzikova R; Vyhlidalova P; Vrablova L; Bartek J; Divoky V
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAD52 as a Potential Target for Synthetic Lethality-Based Anticancer Therapies.
    Toma M; Sullivan-Reed K; Śliwiński T; Skorski T
    Cancers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stitching up broken DNA ends by FANCA.
    Palovcak A; Liu W; Yuan F; Zhang Y
    Mol Cell Oncol; 2018; 5(6):e1518101. PubMed ID: 30525096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression.
    Rebechi MT; Pratz KW
    Leuk Lymphoma; 2017 Sep; 58(9):1-11. PubMed ID: 28278729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Philadelphia chromosome in leukemogenesis.
    Kang ZJ; Liu YF; Xu LZ; Long ZJ; Huang D; Yang Y; Liu B; Feng JX; Pan YJ; Yan JS; Liu Q
    Chin J Cancer; 2016 May; 35():48. PubMed ID: 27233483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation.
    Ahn JS; Li J; Chen E; Kent DG; Park HJ; Green AR
    Oncogene; 2016 Apr; 35(17):2235-46. PubMed ID: 26234675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response.
    Chen E; Ahn JS; Massie CE; Clynes D; Godfrey AL; Li J; Park HJ; Nangalia J; Silber Y; Mullally A; Gibbons RJ; Green AR
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15190-5. PubMed ID: 25288776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy.
    Mladenov E; Magin S; Soni A; Iliakis G
    Front Oncol; 2013; 3():113. PubMed ID: 23675572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New concepts for CML clonality.
    Khorashad JS; Deininger MW; O'Hare T
    Oncotarget; 2013 Jan; 4(1):7-8. PubMed ID: 23448894
    [No Abstract]   [Full Text] [Related]  

  • 18. Rad59 regulates association of Rad52 with DNA double-strand breaks.
    Pannunzio NR; Manthey GM; Liddell LC; Fu BX; Roberts CM; Bailis AM
    Microbiologyopen; 2012 Sep; 1(3):285-97. PubMed ID: 23170228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-homologous end joining mediated DNA repair is impaired in the NUP98-HOXD13 mouse model for myelodysplastic syndrome.
    Puthiyaveetil AG; Reilly CM; Pardee TS; Caudell DL
    Leuk Res; 2013 Jan; 37(1):112-6. PubMed ID: 23131583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JAK2 and genomic instability in the myeloproliferative neoplasms: a case of the chicken or the egg?
    Scott LM; Rebel VI
    Am J Hematol; 2012 Nov; 87(11):1028-36. PubMed ID: 22641564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.