These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 19571497)
1. Visualization of coronary arterial wall based on maximum intensity fusion of whole-heart MR angiograms and water suppression SPIR 3D T(1) TFE images. Tanaka S; Mori M; Kitazaki K; Nakahira K; Nakatsuka H; Maeda Y; Madono H; Naito Y; Sugimori Y; Inoue Y Magn Reson Med Sci; 2009; 8(2):55-63. PubMed ID: 19571497 [TBL] [Abstract][Full Text] [Related]
2. Coronary MR angiography at 3T: fat suppression versus water-fat separation. Nezafat M; Henningsson M; Ripley DP; Dedieu N; Greil G; Greenwood JP; Börnert P; Plein S; Botnar RM MAGMA; 2016 Oct; 29(5):733-8. PubMed ID: 27038934 [TBL] [Abstract][Full Text] [Related]
3. [Optimization of black blood CINE for mobile plaque]. Nakagawa K; Komaki S Nihon Hoshasen Gijutsu Gakkai Zasshi; 2013 Nov; 69(11):1274-80. PubMed ID: 24256651 [TBL] [Abstract][Full Text] [Related]
4. Cervical carotid plaque evaluation using 3D T1-weighted black-blood magnetic resonance imaging: Comparison of turbo field-echo and turbo spin-echo sequences. Inoue K; Maeda M; Umino M; Takase S; Yamahata T; Sakuma H Eur J Radiol; 2016 May; 85(5):1035-9. PubMed ID: 27130068 [TBL] [Abstract][Full Text] [Related]
6. Measuring visceral fat with water-selective suppression methods (SPIR, SPAIR) in patients with metabolic syndrome. Tanaka S; Yoshiyama M; Imanishi Y; Teragaki M; Kasayuki N; Shimizu N; Nakahira K; Hanaki T; Naito Y; Tanaka M; Inoue Y Magn Reson Med Sci; 2007; 6(3):171-5. PubMed ID: 18037797 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of balanced steady-state free precession (TrueFISP) and K-space segmented gradient echo sequences for 3D coronary MR angiography with navigator gating at 3 Tesla. Kaul MG; Stork A; Bansmann PM; Nolte-Ernsting C; Lund GK; Weber C; Adam G Rofo; 2004 Nov; 176(11):1560-5. PubMed ID: 15497073 [TBL] [Abstract][Full Text] [Related]
8. Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. Kim WY; Stuber M; Kissinger KV; Andersen NT; Manning WJ; Botnar RM J Magn Reson Imaging; 2001 Oct; 14(4):383-90. PubMed ID: 11599062 [TBL] [Abstract][Full Text] [Related]
9. Feasibility and diagnostic accuracy of whole heart coronary MR angiography using free-breathing 3D balanced turbo-field-echo with SENSE and the half-fourier acquisition technique. Kim YJ; Seo JS; Choi BW; Choe KO; Jang Y; Ko YG Korean J Radiol; 2006; 7(4):235-42. PubMed ID: 17143026 [TBL] [Abstract][Full Text] [Related]
10. A comparative analysis of double inversion recovery TFE and TSE sequences on carotid artery wall imaging. Chen J; Di YJ; Bu CQ; Zhang YF; Li SH Eur J Radiol; 2012 Feb; 81(2):223-5. PubMed ID: 21237600 [TBL] [Abstract][Full Text] [Related]
11. Bright and black blood imaging of the carotid bifurcation at 3.0T. Hinton DP; Cury RC; Chan RC; Wald LL; Sherwood JB; Furie KL; Pitts JT; Schmitt F Eur J Radiol; 2006 Mar; 57(3):403-11. PubMed ID: 16443343 [TBL] [Abstract][Full Text] [Related]
12. Clinical Magnetic Resonance Imaging of the Knee at 7 T: Optimization of Fat Suppression. Wyss M; Manoliu A; Marcon M; Spinner G; Luechinger R; Pruessmann KP; Andreisek G Invest Radiol; 2019 Mar; 54(3):160-168. PubMed ID: 30418261 [TBL] [Abstract][Full Text] [Related]
13. Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically significant atherosclerosis. Balu N; Chu B; Hatsukami TS; Yuan C; Yarnykh VL J Magn Reson Imaging; 2008 Apr; 27(4):918-24. PubMed ID: 18383253 [TBL] [Abstract][Full Text] [Related]
14. [Improved visualization of long-axis black-blood imaging of the carotid arteries using phase sensitive inversion recovery combined with 3D IR-T₁TFE]. Horie T; Kawakata M; Kajihara N; Takano H; Honda M; Muro I; Ogino T Nihon Hoshasen Gijutsu Gakkai Zasshi; 2011; 67(8):888-94. PubMed ID: 21869542 [TBL] [Abstract][Full Text] [Related]
15. [MR-Imaging of lower leg muscle perfusion]. Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340 [TBL] [Abstract][Full Text] [Related]
16. [Carotid plaque assessment using inversion recovery T1 weighted-3 dimensions variable refocus flip angle turbo spin echo sampling perfection with application optimized contrast using different angle evolutions black blood imaging]. Inoue Y; Yoneyama M; Nakamura M; Ozaki S; Ito K; Hiura M Nihon Hoshasen Gijutsu Gakkai Zasshi; 2012; 68(7):880-8. PubMed ID: 22821162 [TBL] [Abstract][Full Text] [Related]
17. Correlation between magnetic resonance angiography (MRA) and quantitative coronary angiography (QCA) in ectatic coronary vessels. Mavrogeni SI; Manginas A; Papadakis E; Foussas S; Douskou M; Baras P; Seimenis I; Cokkinos DV J Cardiovasc Magn Reson; 2004; 6(1):17-23. PubMed ID: 15054925 [TBL] [Abstract][Full Text] [Related]
18. Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Shechter G; Resar JR; McVeigh ER Med Phys; 2005 Jan; 32(1):255-62. PubMed ID: 15719976 [TBL] [Abstract][Full Text] [Related]
19. Double spectral attenuated inversion recovery (DSPAIR)-an efficient fat suppression technique for late gadolinium enhancement at 3 tesla. Jenista ER; Jensen CJ; Wendell D; Spatz D; Darty S; Kim HW; Parker M; Klem I; Chen EL; Kim RJ; Rehwald WG NMR Biomed; 2021 Oct; 34(10):e4580. PubMed ID: 34251717 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Kim WY; Stuber M; Börnert P; Kissinger KV; Manning WJ; Botnar RM Circulation; 2002 Jul; 106(3):296-9. PubMed ID: 12119242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]