These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19572153)

  • 1. Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits.
    Nurmi P; Ozkaya B; Kaksonen AH; Tuovinen OH; Puhakka JA
    Bioprocess Biosyst Eng; 2010 May; 33(4):449-56. PubMed ID: 19572153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically Fe2+ oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap bioleaching: an artificial neural network-based model.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Bioprocess Biosyst Eng; 2008 Feb; 31(2):111-7. PubMed ID: 17712572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network models for biological waste-gas treatment systems.
    Rene ER; Estefanía López M; Veiga MC; Kennes C
    N Biotechnol; 2011 Dec; 29(1):56-73. PubMed ID: 21784184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches--a case study.
    Singh KP; Basant N; Malik A; Jain G
    Anal Chim Acta; 2010 Jan; 658(1):1-11. PubMed ID: 20082768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.
    Elmolla ES; Chaudhuri M; Eltoukhy MM
    J Hazard Mater; 2010 Jul; 179(1-3):127-34. PubMed ID: 20307930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation.
    Jahandideh S; Jahandideh S; Asadabadi EB; Askarian M; Movahedi MM; Hosseini S; Jahandideh M
    Waste Manag; 2009 Nov; 29(11):2874-9. PubMed ID: 19643591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-mechanistic modelling of complex biofilm reactors and the role of process operation history.
    Wolf G; Almeida JS; Reis MA; Crespo JG
    J Biotechnol; 2005 Jun; 117(4):367-83. PubMed ID: 15925719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro-in vivo correlation.
    Parojcić J; Ibrić S; Djurić Z; Jovanović M; Corrigan OI
    Eur J Pharm Sci; 2007 Mar; 30(3-4):264-72. PubMed ID: 17188851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling denitrifying sulfide removal process using artificial neural networks.
    Wang A; Liu C; Han H; Ren N; Lee DJ
    J Hazard Mater; 2009 Sep; 168(2-3):1274-9. PubMed ID: 19359094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of the extractive membrane bioreactor process based on natural fluorescence fingerprints and process operation history.
    Wolf G; Almeida JS; Reis MA; Crespo JG
    Water Sci Technol; 2005; 51(6-7):51-8. PubMed ID: 16003961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust, quantitative tools for modelling ex-vivo expansion of haematopoietic stem cells and progenitors.
    Winkler DA; Burden FR
    Mol Biosyst; 2012 Mar; 8(3):913-20. PubMed ID: 22282302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural network for the joint modelling of discrete cause-specific hazards.
    Biganzoli EM; Boracchi P; Ambrogi F; Marubini E
    Artif Intell Med; 2006 Jun; 37(2):119-30. PubMed ID: 16730963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Norwalk-like virus presence in shellfish, using artificial neural networks.
    Brion G; Lingeriddy S; Neelakantan TR; Wang M; Girones R; Lees D; Allard A; Vantarakis A
    Water Sci Technol; 2004; 50(1):125-9. PubMed ID: 15318497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks.
    Sonke GS; Heskes T; Verbeek AL; de la Rosette JJ; Kiemeney LA
    J Urol; 2000 Jan; 163(1):300-5. PubMed ID: 10604380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.
    Arulsudar N; Subramanian N; Muthy RS
    J Pharm Pharm Sci; 2005 Aug; 8(2):243-58. PubMed ID: 16124936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of human skin permeability using artificial neural network (ANN) modeling.
    Chen LJ; Lian GP; Han LJ
    Acta Pharmacol Sin; 2007 Apr; 28(4):591-600. PubMed ID: 17376301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of artificial neural network to fMRI regression analysis.
    Misaki M; Miyauchi S
    Neuroimage; 2006 Jan; 29(2):396-408. PubMed ID: 16140549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling photosynthetically oxygenated biodegradation processes using artificial neural networks.
    Arranz A; Bordel S; Villaverde S; Zamarreño JM; Guieysse B; Muñoz R
    J Hazard Mater; 2008 Jun; 155(1-2):51-7. PubMed ID: 18164545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.