These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19572294)

  • 1. Early matrix change of a nanostructured bone grafting substitute in the rat.
    Xu W; Holzhüter G; Sorg H; Wolter D; Lenz S; Gerber T; Vollmar B
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):692-699. PubMed ID: 19572294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.
    Götz W; Gerber T; Michel B; Lossdörfer S; Henkel KO; Heinemann F
    Clin Oral Implants Res; 2008 Oct; 19(10):1016-26. PubMed ID: 18828818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.
    Ghanaati S; Orth C; Barbeck M; Willershausen I; Thimm BW; Booms P; Stübinger S; Landes C; Sader RA; Kirkpatrick CJ
    Biomed Mater; 2010 Jun; 5(3):35005. PubMed ID: 20460687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model.
    Xu W; Ganz C; Weber U; Adam M; Holzhüter G; Wolter D; Frerich B; Vollmar B; Gerber T
    Int J Nanomedicine; 2011; 6():1543-52. PubMed ID: 21845044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro investigations of a nanostructured coating material - a preclinical study.
    Adam M; Ganz C; Xu W; Sarajian HR; Götz W; Gerber T
    Int J Nanomedicine; 2014; 9():975-84. PubMed ID: 24627631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.
    Dau M; Ganz C; Zaage F; Frerich B; Gerber T
    Int J Nanomedicine; 2017; 12():7393-7404. PubMed ID: 29066890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.
    Weigand A; Beier JP; Hess A; Gerber T; Arkudas A; Horch RE; Boos AM
    Tissue Eng Part A; 2015 May; 21(9-10):1680-94. PubMed ID: 25760576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix change of bone grafting substitute after implantation into guinea pig bulla.
    Punke Ch; Zehlicke T; Just T; Holzhüter G; Gerber T; Pau HW
    Folia Morphol (Warsz); 2012 May; 71(2):109-14. PubMed ID: 22648590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.
    Ghanaati S; Barbeck M; Orth C; Willershausen I; Thimm BW; Hoffmann C; Rasic A; Sader RA; Unger RE; Peters F; Kirkpatrick CJ
    Acta Biomater; 2010 Dec; 6(12):4476-87. PubMed ID: 20624495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels.
    van der Stok J; Koolen MK; de Maat MP; Yavari SA; Alblas J; Patka P; Verhaar JA; van Lieshout EM; Zadpoor AA; Weinans H; Jahr H
    Eur Cell Mater; 2015 Mar; 29():141-53; discussion 153-4. PubMed ID: 25738583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.
    Abshagen K; Schrodi I; Gerber T; Vollmar B
    J Biomed Mater Res A; 2009 Nov; 91(2):557-66. PubMed ID: 18985779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation.
    Ghanaati S; Udeabor SE; Barbeck M; Willershausen I; Kuenzel O; Sader RA; Kirkpatrick CJ
    Head Face Med; 2013 Jan; 9():1. PubMed ID: 23286366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study.
    Taylor JC; Cuff SE; Leger JP; Morra A; Anderson GI
    Int J Oral Maxillofac Implants; 2002; 17(3):321-30. PubMed ID: 12074446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Evaluation of a Chitosan-Silica-Based Bone Substitute for Tissue Engineering.
    Alvarez Echazú MI; Renou SJ; Alvarez GS; Desimone MF; Olmedo DG
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.
    Konermann A; Staubwasser M; Dirk C; Keilig L; Bourauel C; Götz W; Jäger A; Reichert C
    Int J Oral Maxillofac Surg; 2014 Apr; 43(4):514-21. PubMed ID: 24268900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attributes of Bio-Oss
    Smith MM; Duncan WJ; Coates DE
    J Periodontal Res; 2018 Feb; 53(1):80-90. PubMed ID: 28868669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: A promising association for bone tissue engineering in oral reconstruction.
    Miranda SC; Silva GA; Hell RC; Martins MD; Alves JB; Goes AM
    Arch Oral Biol; 2011 Jan; 56(1):1-15. PubMed ID: 20887975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a new bioactive fibrous glassy scaffold on bone repair.
    Gabbai-Armelin PR; Souza MT; Kido HW; Tim CR; Bossini PS; Magri AM; Fernandes KR; Pastor FA; Zanotto ED; Parizotto NA; Peitl O; Renno AC
    J Mater Sci Mater Med; 2015 May; 26(5):177. PubMed ID: 25893392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantation of an Injectable Bone Substitute Material Enables Integration Following the Principles of Guided Bone Regeneration.
    Barbeck M; Jung O; Smeets R; Gosau M; Schnettler R; Rider P; Houshmand A; Korzinskas T
    In Vivo; 2020; 34(2):557-568. PubMed ID: 32111754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response.
    Langstaff S; Sayer M; Smith TJ; Pugh SM
    Biomaterials; 2001 Jan; 22(2):135-50. PubMed ID: 11101158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.