BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19572390)

  • 1. In vivo MR elastography of the prostate gland using a transurethral actuator.
    Chopra R; Arani A; Huang Y; Musquera M; Wachsmuth J; Bronskill M; Plewes D
    Magn Reson Med; 2009 Sep; 62(3):665-71. PubMed ID: 19572390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel technique for MR elastography of the prostate using a modified standard endorectal coil as actuator.
    Thörmer G; Reiss-Zimmermann M; Otto J; Hoffmann KT; Moche M; Garnov N; Kahn T; Busse H
    J Magn Reson Imaging; 2013 Jun; 37(6):1480-5. PubMed ID: 23055397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transurethral prostate magnetic resonance elastography: prospective imaging requirements.
    Arani A; Plewes D; Chopra R
    Magn Reson Med; 2011 Feb; 65(2):340-9. PubMed ID: 20882673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of endorectal MR elastography for prostate cancer localization.
    Arani A; Plewes D; Krieger A; Chopra R
    Magn Reson Med; 2011 Dec; 66(6):1649-57. PubMed ID: 21574182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convertible pneumatic actuator for magnetic resonance elastography of the brain.
    Latta P; Gruwel ML; Debergue P; Matwiy B; Sboto-Frankenstein UN; Tomanek B
    Magn Reson Imaging; 2011 Jan; 29(1):147-52. PubMed ID: 20833495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostate MR elastography with transperineal electromagnetic actuation and a fast fractionally encoded steady-state gradient echo sequence.
    Sahebjavaher RS; Frew S; Bylinskii A; ter Beek L; Garteiser P; Honarvar M; Sinkus R; Salcudean S
    NMR Biomed; 2014 Jul; 27(7):784-94. PubMed ID: 24764278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom.
    Neumann W; Bichert A; Fleischhauer J; Stern A; Figuli R; Wilhelm M; Schad LR; Zöllner FG
    PLoS One; 2018; 13(10):e0205442. PubMed ID: 30296308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR elastography of the prostate: initial in-vivo application.
    Kemper J; Sinkus R; Lorenzen J; Nolte-Ernsting C; Stork A; Adam G
    Rofo; 2004 Aug; 176(8):1094-9. PubMed ID: 15346284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic actuator for generating variably oriented shear waves in MR elastography.
    Braun J; Braun K; Sack I
    Magn Reson Med; 2003 Jul; 50(1):220-2. PubMed ID: 12815700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance elastography using an air ball-actuator.
    Numano T; Kawabata Y; Mizuhara K; Washio T; Nitta N; Homma K
    Magn Reson Imaging; 2013 Jul; 31(6):939-46. PubMed ID: 23602728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric actuator design for MR elastography: implementation and vibration issues.
    Tse ZT; Chan YJ; Janssen H; Hamed A; Young I; Lamperth M
    Int J Med Robot; 2011 Sep; 7(3):353-60. PubMed ID: 21793149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomoelastography of the prostate using multifrequency MR elastography and externally placed pressurized-air drivers.
    Dittmann F; Reiter R; Guo J; Haas M; Asbach P; Fischer T; Braun J; Sack I
    Magn Reson Med; 2018 Mar; 79(3):1325-1333. PubMed ID: 28585229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance elastography hardware design: a survey.
    Tse ZT; Janssen H; Hamed A; Ristic M; Young I; Lamperth M
    Proc Inst Mech Eng H; 2009 May; 223(4):497-514. PubMed ID: 19499839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).
    Yin Z; Magin RL; Klatt D
    Magn Reson Med; 2014 May; 71(5):1682-8. PubMed ID: 24648402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction.
    Hirsch S; Guo J; Reiter R; Papazoglou S; Kroencke T; Braun J; Sack I
    Magn Reson Med; 2014 Jan; 71(1):267-77. PubMed ID: 23413115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance elastography with a phased-array acoustic driver system.
    Mariappan YK; Rossman PJ; Glaser KJ; Manduca A; Ehman RL
    Magn Reson Med; 2009 Mar; 61(3):678-85. PubMed ID: 19132758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-compatible transurethral ultrasound system for the treatment of localized prostate cancer using rotational control.
    Chopra R; Baker N; Choy V; Boyes A; Tang K; Bradwell D; Bronskill MJ
    Med Phys; 2008 Apr; 35(4):1346-57. PubMed ID: 18491529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.