BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19572525)

  • 1. Easy route to functionalize iron oxide nanoparticles via long-term stable thiol groups.
    Maurizi L; Bisht H; Bouyer F; Millot N
    Langmuir; 2009 Aug; 25(16):8857-9. PubMed ID: 19572525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA.
    Soler MA; Lima EC; Nunes ES; Silva FL; Oliveira AC; Azevedo RB; Morais PC
    J Phys Chem A; 2011 Feb; 115(6):1003-8. PubMed ID: 21261312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging.
    Amstad E; Zurcher S; Mashaghi A; Wong JY; Textor M; Reimhult E
    Small; 2009 Jun; 5(11):1334-42. PubMed ID: 19242944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI.
    Chen TJ; Cheng TH; Hung YC; Lin KT; Liu GC; Wang YM
    J Biomed Mater Res A; 2008 Oct; 87(1):165-75. PubMed ID: 18085650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of chitosan thiolation and application to thiol quantification onto nanoparticle surface.
    Bravo-Osuna I; Teutonico D; Arpicco S; Vauthier C; Ponchel G
    Int J Pharm; 2007 Aug; 340(1-2):173-81. PubMed ID: 17592748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly.
    Ujiie K; Kanayama N; Asai K; Kishimoto M; Ohara Y; Akashi Y; Yamada K; Hashimoto S; Oda T; Ohkohchi N; Yanagihara H; Kita E; Yamaguchi M; Fujii H; Nagasaki Y
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):771-8. PubMed ID: 21890332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles.
    Mejías R; Pérez-Yagüe S; Roca AG; Pérez N; Villanueva A; Cañete M; Mañes S; Ruiz-Cabello J; Benito M; Labarta A; Batlle X; Veintemillas-Verdaguer S; Morales MP; Barber DF; Serna CJ
    Nanomedicine (Lond); 2010 Apr; 5(3):397-408. PubMed ID: 20394533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines.
    Martin AL; Bernas LM; Rutt BK; Foster PJ; Gillies ER
    Bioconjug Chem; 2008 Dec; 19(12):2375-84. PubMed ID: 19053308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles.
    Yantasee W; Warner CL; Sangvanich T; Addleman RS; Carter TG; Wiacek RJ; Fryxell GE; Timchalk C; Warner MG
    Environ Sci Technol; 2007 Jul; 41(14):5114-9. PubMed ID: 17711232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis and characterization of three kinds of thiol-organosilica nanoparticles.
    Nakamura M; Ishimura K
    Langmuir; 2008 May; 24(9):5099-108. PubMed ID: 18366224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the binding properties of maghemite nanoparticle surface-coated with meso-2-3-dimercaptosuccinic acid to serum albumin.
    Simoni AR; Garcia MP; Azevedo RB; Chaves SB; Lacava ZG; Lima EC; Morais PC; Tedesco AC
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5813-7. PubMed ID: 19198310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.
    Ge Y; Zhang Y; Xia J; Ma M; He S; Nie F; Gu N
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):294-301. PubMed ID: 19564099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection.
    Wu Y; Song M; Xin Z; Zhang X; Zhang Y; Wang C; Li S; Gu N
    Nanotechnology; 2011 Jun; 22(22):225703. PubMed ID: 21454943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly system of direct modified superparamagnetic iron oxide nanoparticles for target-specific MRI contrast agents.
    Tanaka K; Kitamura N; Morita M; Inubushi T; Chujo Y
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5463-5. PubMed ID: 18829309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles.
    Bach A; Zelmanov G; Semiat R
    Water Res; 2008 Jan; 42(1-2):163-8. PubMed ID: 17826818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium.
    Chanteau B; Fresnais J; Berret JF
    Langmuir; 2009 Aug; 25(16):9064-70. PubMed ID: 19572532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles.
    Shultz MD; Reveles JU; Khanna SN; Carpenter EE
    J Am Chem Soc; 2007 Mar; 129(9):2482-7. PubMed ID: 17290990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase.
    Konwarh R; Karak N; Rai SK; Mukherjee AK
    Nanotechnology; 2009 Jun; 20(22):225107. PubMed ID: 19433867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles.
    Bharde AA; Parikh RY; Baidakova M; Jouen S; Hannoyer B; Enoki T; Prasad BL; Shouche YS; Ogale S; Sastry M
    Langmuir; 2008 Jun; 24(11):5787-94. PubMed ID: 18454562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.