BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 19572525)

  • 21. Magnetic iron oxide nanoparticle functionalization: isocyanate moiety as a suitable monodentate anchoring group.
    Carrara C; Sala MC; Caneva E; Cauteruccio S; Licandro E
    Org Lett; 2014 Jan; 16(2):460-3. PubMed ID: 24364416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticles under the light: click functionalization by photochemical thiol-yne reaction, towards double click functionalization.
    Demay-Drouhard P; Nehlig E; Hardouin J; Motte L; Guénin E
    Chemistry; 2013 Jun; 19(26):8388-92. PubMed ID: 23744751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of pyridyl disulfide-functionalized nanoparticles for conjugating thiol-containing small molecules, peptides, and proteins.
    van der Vlies AJ; O'Neil CP; Hasegawa U; Hammond N; Hubbell JA
    Bioconjug Chem; 2010 Apr; 21(4):653-62. PubMed ID: 20369815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inductive heating with magnetic materials inside flow reactors.
    Ceylan S; Coutable L; Wegner J; Kirschning A
    Chemistry; 2011 Feb; 17(6):1884-93. PubMed ID: 21274939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2, 3-dimercaptosuccinic acid-modified iron oxide clusters for magnetic resonance imaging.
    Xiong F; Yan C; Tian J; Geng K; Zhu Z; Song L; Zhang Y; Mulvale M; Gu N
    J Pharm Sci; 2014 Dec; 103(12):4030-4037. PubMed ID: 25335461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging.
    Bertorelle F; Wilhelm C; Roger J; Gazeau F; Ménager C; Cabuil V
    Langmuir; 2006 Jun; 22(12):5385-91. PubMed ID: 16732667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing beta-ketoester functionalities.
    Papaphilippou P; Loizou L; Popa NC; Han A; Vekas L; Odysseos A; Krasia-Christoforou T
    Biomacromolecules; 2009 Sep; 10(9):2662-71. PubMed ID: 19627141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superparamagnetic iron oxide nanoparticles with photoswitchable fluorescence.
    Min Yeo K; Ji Gao C; Ahn KH; Su Lee I
    Chem Commun (Camb); 2008 Oct; (38):4622-4. PubMed ID: 18815704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiol-ene induced diphosphonic acid functionalization of superparamagnetic iron oxide nanoparticles.
    Rutledge RD; Warner CL; Pittman JW; Addleman RS; Engelhard M; Chouyyok W; Warner MG
    Langmuir; 2010 Jul; 26(14):12285-92. PubMed ID: 20550201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands.
    Spuches AM; Kruszyna HG; Rich AM; Wilcox DE
    Inorg Chem; 2005 Apr; 44(8):2964-72. PubMed ID: 15819584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined ATRP and 'click' chemistry for designing stable tumor-targeting superparamagnetic iron oxide nanoparticles.
    Huang C; Neoh KG; Kang ET
    Langmuir; 2012 Jan; 28(1):563-71. PubMed ID: 22121942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gold nanoparticles protected with thiol-derivatized amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid).
    Javakhishvili I; Hvilsted S
    Biomacromolecules; 2009 Jan; 10(1):74-81. PubMed ID: 19053294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrite anion: the key intermediate in alkyl nitrates degradative mechanism.
    Grossi L
    J Med Chem; 2008 Jun; 51(11):3318-21. PubMed ID: 18442229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective modification of surface-exposed thiol groups in Trigonopsis variabilis D-amino acid oxidase using poly(ethylene glycol) maleimide and its effect on activity and stability of the enzyme.
    Slavica A; Dib I; Nidetzky B
    Biotechnol Bioeng; 2007 Jan; 96(1):9-17. PubMed ID: 16948164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.
    Lee WB; Weng CH; Cheng FY; Yeh CS; Lei HY; Lee GB
    Biomed Microdevices; 2009 Feb; 11(1):161-71. PubMed ID: 18756355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating.
    Zhang L; Wang X; Zou J; Liu Y; Wang J
    Chem Res Toxicol; 2015 Oct; 28(10):1961-74. PubMed ID: 26378955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.
    Benbenishty-Shamir H; Gilert R; Gotman I; Gutmanas EY; Sukenik CN
    Langmuir; 2011 Oct; 27(19):12082-9. PubMed ID: 21863873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents.
    Çitoğlu S; Coşkun ÖD; Tung LD; Onur MA; Thanh NTK
    Nanomedicine (Lond); 2021 May; 16(11):925-941. PubMed ID: 34015971
    [No Abstract]   [Full Text] [Related]  

  • 39. Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis.
    d'Orlyé F; Varenne A; Georgelin T; Siaugue JM; Teste B; Descroix S; Gareil P
    Electrophoresis; 2009 Jul; 30(14):2572-82. PubMed ID: 19593752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells.
    Villanueva A; Cañete M; Roca AG; Calero M; Veintemillas-Verdaguer S; Serna CJ; Morales Mdel P; Miranda R
    Nanotechnology; 2009 Mar; 20(11):115103. PubMed ID: 19420433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.