These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 19572541)
1. Terminal velocity and mobile surface species in rising microbubbles. Manor O; Chan DY Langmuir; 2009 Aug; 25(16):8899-902. PubMed ID: 19572541 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of Rear Stagnant Cap formation at the surface of spherical bubbles rising in surfactant solutions at large Reynolds numbers under conditions of small Marangoni number and slow sorption kinetics. Dukhin SS; Kovalchuk VI; Gochev GG; Lotfi M; Krzan M; Malysa K; Miller R Adv Colloid Interface Sci; 2015 Aug; 222():260-74. PubMed ID: 25455807 [TBL] [Abstract][Full Text] [Related]
3. Coalescence Dynamics of Mobile and Immobile Fluid Interfaces. Vakarelski IU; Manica R; Li EQ; Basheva ES; Chan DYC; Thoroddsen ST Langmuir; 2018 Feb; 34(5):2096-2108. PubMed ID: 29328665 [TBL] [Abstract][Full Text] [Related]
4. Bubbles with tunable mobility of surfaces in ethanol-NaCl aqueous solutions. Zhang X; Manica R; Tang Y; Liu Q; Xu Z J Colloid Interface Sci; 2019 Nov; 556():345-351. PubMed ID: 31465965 [TBL] [Abstract][Full Text] [Related]
5. An Insoluble Surfactant Model for a Vertical Draining Free Film. Naire S; Braun RJ; Snow SA J Colloid Interface Sci; 2000 Oct; 230(1):91-106. PubMed ID: 10998292 [TBL] [Abstract][Full Text] [Related]
6. Numerical investigation of bubble-induced Marangoni convection. O'Shaughnessy SM; Robinson AJ Ann N Y Acad Sci; 2009 Apr; 1161():304-20. PubMed ID: 19426328 [TBL] [Abstract][Full Text] [Related]
7. Role of surfactants on the approaching velocity of two small emulsion drops. Danov KD; Stoyanov SD; Vitanov NK; Ivanov IB J Colloid Interface Sci; 2012 Feb; 368(1):342-55. PubMed ID: 22183262 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of Rear Stagnant Cap Formation at Low Reynolds Numbers. Zholkovskij EK; Koval'chuk VI; Dukhin SS; Miller R J Colloid Interface Sci; 2000 Jun; 226(1):51-59. PubMed ID: 11401345 [TBL] [Abstract][Full Text] [Related]
10. A model for foam formation, stability, and breakdown in glass-melting furnaces. van der Schaaf J; Beerkens RG J Colloid Interface Sci; 2006 Mar; 295(1):218-29. PubMed ID: 16140316 [TBL] [Abstract][Full Text] [Related]
11. Effect of an entrained air bubble on the acoustics of an ink channel. Jeurissen R; de Jong J; Reinten H; van den Berg M; Wijshoff H; Versluis M; Lohse D J Acoust Soc Am; 2008 May; 123(5):2496-505. PubMed ID: 18529168 [TBL] [Abstract][Full Text] [Related]
12. Universal expression for the drag on a fluid sphere. Barry DA; Parlange JY PLoS One; 2018; 13(4):e0194907. PubMed ID: 29659596 [TBL] [Abstract][Full Text] [Related]
13. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle. Setoura K; Ito S; Miyasaka H Nanoscale; 2017 Jan; 9(2):719-730. PubMed ID: 27959376 [TBL] [Abstract][Full Text] [Related]
14. Interfacial flow of a surfactant-laden interface under asymmetric shear flow. Eftekhari M; Schwarzenberger K; Heitkam S; Eckert K J Colloid Interface Sci; 2021 Oct; 599():837-848. PubMed ID: 33991800 [TBL] [Abstract][Full Text] [Related]
15. Orientation and related buoyancy effects in low-velocity flow boiling. Merte H; Schultz WW; Liu Q; Keller RB Ann N Y Acad Sci; 2009 Apr; 1161():202-10. PubMed ID: 19426318 [TBL] [Abstract][Full Text] [Related]
16. The hydrodynamics of bubble rise and impact with solid surfaces. Manica R; Klaseboer E; Chan DYC Adv Colloid Interface Sci; 2016 Sep; 235():214-232. PubMed ID: 27378067 [TBL] [Abstract][Full Text] [Related]
17. Bubble rise in molten glasses and silicate melts during heating and cooling cycles. Jackson LE; Wadsworth FB; Mitchell J; Rennie C; Llewellin EW; Hess KU; Dingwell DB J Am Ceram Soc; 2022 Dec; 105(12):7238-7253. PubMed ID: 36618556 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of single rising bubbles in neutrally buoyant liquid-solid suspensions. Hooshyar N; van Ommen JR; Hamersma PJ; Sundaresan S; Mudde RF Phys Rev Lett; 2013 Jun; 110(24):244501. PubMed ID: 25165930 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. Kim Y; Ding H; Zheng Y Nano Lett; 2020 Oct; 20(10):7020-7027. PubMed ID: 32667815 [TBL] [Abstract][Full Text] [Related]
20. Interfacial polygonal nanopatterning of stable microbubbles. Dressaire E; Bee R; Bell DC; Lips A; Stone HA Science; 2008 May; 320(5880):1198-201. PubMed ID: 18511685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]