These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 19572543)
1. In vitro fermentation of oat flours from typical and high beta-glucan oat lines. Kim HJ; White PJ J Agric Food Chem; 2009 Aug; 57(16):7529-36. PubMed ID: 19572543 [TBL] [Abstract][Full Text] [Related]
2. Digestion residues of typical and high-beta-glucan oat flours provide substrates for in vitro fermentation. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2007 Jun; 55(13):5306-11. PubMed ID: 17550267 [TBL] [Abstract][Full Text] [Related]
3. In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan. Kim HJ; White PJ J Agric Food Chem; 2010 Jan; 58(1):628-34. PubMed ID: 20020684 [TBL] [Abstract][Full Text] [Related]
4. In vitro digestion rate and estimated glycemic index of oat flours from typical and high β-glucan oat lines. Kim HJ; White PJ J Agric Food Chem; 2012 May; 60(20):5237-42. PubMed ID: 22563763 [TBL] [Abstract][Full Text] [Related]
5. In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Connolly ML; Lovegrove JA; Tuohy KM Anaerobe; 2010 Oct; 16(5):483-8. PubMed ID: 20624475 [TBL] [Abstract][Full Text] [Related]
6. In vitro bile acid binding of flours from oat lines varying in percentage and molecular weight distribution of beta-glucan. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2005 Nov; 53(22):8797-803. PubMed ID: 16248587 [TBL] [Abstract][Full Text] [Related]
7. In vitro bile acid binding activity within flour fractions from oat lines with typical and high beta-glucan amounts. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2006 Jul; 54(14):5142-8. PubMed ID: 16819928 [TBL] [Abstract][Full Text] [Related]
8. Optimizing the molecular weight of oat β-glucan for in vitro bile acid binding and fermentation. Kim HJ; White PJ J Agric Food Chem; 2011 Sep; 59(18):10322-8. PubMed ID: 21834529 [TBL] [Abstract][Full Text] [Related]
9. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123 [TBL] [Abstract][Full Text] [Related]
10. Impact of dry solids and bile acid concentrations on bile acid binding capacity of extruded oat cereals. Yao N; White PJ; Jannink JL; Alavi S J Agric Food Chem; 2008 Sep; 56(18):8672-9. PubMed ID: 18754664 [TBL] [Abstract][Full Text] [Related]
11. Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria--a study of pyrodextrinised starches from different sources. Laurentin A; Edwards CA Eur J Nutr; 2004 Jun; 43(3):183-9. PubMed ID: 15168041 [TBL] [Abstract][Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
13. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. Anguita M; Canibe N; Pérez JF; Jensen BB J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578 [TBL] [Abstract][Full Text] [Related]
14. Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. Shen RL; Dang XY; Dong JL; Hu XZ J Agric Food Chem; 2012 Nov; 60(45):11301-8. PubMed ID: 23113683 [TBL] [Abstract][Full Text] [Related]
15. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157 [TBL] [Abstract][Full Text] [Related]
16. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819 [TBL] [Abstract][Full Text] [Related]
17. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. Giuberti G; Gallo A; Moschini M; Masoero F Animal; 2013 Sep; 7(9):1446-53. PubMed ID: 23782951 [TBL] [Abstract][Full Text] [Related]
18. Interactional effects of β-glucan, starch, and protein in heated oat slurries on viscosity and in vitro bile acid binding. Kim HJ; White PJ J Agric Food Chem; 2012 Jun; 60(24):6217-22. PubMed ID: 22620860 [TBL] [Abstract][Full Text] [Related]
19. Development of a new oat-based probiotic drink. Angelov A; Gotcheva V; Kuncheva R; Hristozova T Int J Food Microbiol; 2006 Oct; 112(1):75-80. PubMed ID: 16854486 [TBL] [Abstract][Full Text] [Related]
20. Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Queenan KM; Stewart ML; Smith KN; Thomas W; Fulcher RG; Slavin JL Nutr J; 2007 Mar; 6():6. PubMed ID: 17386092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]