These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19572616)

  • 21. Nitrogen-doped graphene and its application in electrochemical biosensing.
    Wang Y; Shao Y; Matson DW; Li J; Lin Y
    ACS Nano; 2010 Apr; 4(4):1790-8. PubMed ID: 20373745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes.
    Barone V; Peralta JE; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jan; 124(2):024709. PubMed ID: 16422628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications.
    Lee WJ; Maiti UN; Lee JM; Lim J; Han TH; Kim SO
    Chem Commun (Camb); 2014 Jul; 50(52):6818-30. PubMed ID: 24710592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-doped direction-dependent electronic and mechanical properties of single-walled carbon nanotube (SWCNT) from a first-principles density functional theory (DFT) and MD-simulation.
    Singh YT; Patra PK; Obodo KO; Saad H-E MM; Rai DP
    J Mol Graph Model; 2022 Mar; 111():108111. PubMed ID: 34953321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indirect magnetic coupling in light-element-doped single-walled carbon nanotubes.
    Krstić V; Ewels CP; Wågberg T; Ferreira MS; Janssens AM; Stéphan O; Glerup M
    ACS Nano; 2010 Sep; 4(9):5081-6. PubMed ID: 20684527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the Dopant Configuration on the Electronic Transport Properties of Nitrogen-Doped Carbon Nanotubes.
    Eklund K; Karttunen AJ
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning of sorted double-walled carbon nanotubes by electrochemical charging.
    Kalbac M; Green AA; Hersam MC; Kavan L
    ACS Nano; 2010 Jan; 4(1):459-69. PubMed ID: 20050694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-doped carbon nanotubes interacting with vitamin C.
    Cadore AR; Zanella I; de Menezes VM; Rossato J; Mota R; Fagan SB
    Phys Chem Chem Phys; 2012 Dec; 14(48):16737-44. PubMed ID: 23138524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of polygonal carbon nanotubes.
    Huang L; Cao D
    Nanoscale; 2012 Sep; 4(17):5420-4. PubMed ID: 22833232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ab initio study of hydrogen chemisorption in nitrogen-doped carbon nanotubes.
    Correa JD; Florez E; Mora-Ramos ME
    Phys Chem Chem Phys; 2016 Sep; 18(36):25663-25670. PubMed ID: 27711503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of nitrogen doping on the mechanical properties of carbon nanotubes.
    Ganesan Y; Peng C; Lu Y; Ci L; Srivastava A; Ajayan PM; Lou J
    ACS Nano; 2010 Dec; 4(12):7637-43. PubMed ID: 21070008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Band engineering of oxygen doped single-walled carbon nanotubes.
    Suggs K; Person V; Wang XQ
    Nanoscale; 2011 Jun; 3(6):2465-8. PubMed ID: 21573279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibrational and electronic structure analysis of a carbon dioxide interaction with functionalized single-walled carbon nanotubes.
    Paura EN; da Cunha WF; de Oliveira Neto PH; e Silva GM; Martins JB; Gargano R
    J Phys Chem A; 2013 Apr; 117(13):2854-61. PubMed ID: 23425025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration.
    Yu C; Ryu Y; Yin L; Yang H
    ACS Nano; 2011 Feb; 5(2):1297-303. PubMed ID: 21222461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of nitrogen doping of carbon nanoribbons: edge effects.
    Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J
    J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of contacts and ambipolar electrical transport in nitrogen doped multiwall carbon nanotubes.
    Zhang WJ; Zhang JY; Li PJ; Shen X; Zhang QF; Wu JL
    Nanotechnology; 2008 Feb; 19(8):085202. PubMed ID: 21730720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping.
    Navarro-Santos P; Ricardo-Chávez JL; Reyes-Reyes M; Rivera JL; López-Sandoval R
    J Phys Condens Matter; 2010 Dec; 22(50):505302. PubMed ID: 21406793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal conversion of electronic and electrical properties of AuCl3-doped single-walled carbon nanotubes.
    Yoon SM; Kim UJ; Benayad A; Lee IH; Son H; Shin HJ; Choi WM; Lee YH; Jin YW; Lee EH; Lee SY; Choi JY; Kim JM
    ACS Nano; 2011 Feb; 5(2):1353-9. PubMed ID: 21261295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu-CNT composites.
    Milowska KZ; Burda M; Wolanicka L; Bristowe PD; Koziol KKK
    Nanoscale; 2018 Dec; 11(1):145-157. PubMed ID: 30525144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.