BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19572690)

  • 1. Effects of substrate, protein environment, and proximal ligand mutation on compound I and compound 0 of chloroperoxidase.
    Lai W; Chen H; Cho KB; Shaik S
    J Phys Chem A; 2009 Oct; 113(43):11763-71. PubMed ID: 19572690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compound I in heme thiolate enzymes: a comparative QM/MM study.
    Cho KB; Hirao H; Chen H; Carvajal MA; Cohen S; Derat E; Thiel W; Shaik S
    J Phys Chem A; 2008 Dec; 112(50):13128-38. PubMed ID: 18850694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D; Hirao H; de Visser SP; Zheng J; Wang D; Thiel W; Shaik S
    J Phys Chem B; 2005 Oct; 109(42):19946-51. PubMed ID: 16853579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico design of a mutant of cytochrome P450 containing selenocysteine.
    Cohen S; Kumar D; Shaik S
    J Am Chem Soc; 2006 Mar; 128(8):2649-53. PubMed ID: 16492051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for two ferryl species in chloroperoxidase compound II.
    Stone KL; Hoffart LM; Behan RK; Krebs C; Green MT
    J Am Chem Soc; 2006 May; 128(18):6147-53. PubMed ID: 16669684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compound I of nitric oxide synthase: the active site protonation state.
    Cho KB; Derat E; Shaik S
    J Am Chem Soc; 2007 Mar; 129(11):3182-8. PubMed ID: 17319660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What kinds of ferryl species exist for compound II of chloroperoxidase? A dialog of theory with experiment.
    Lai W; Chen H; Shaik S
    J Phys Chem B; 2009 Jun; 113(22):7912-7. PubMed ID: 19408918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid freeze-quench ENDOR study of chloroperoxidase compound I: the site of the radical.
    Kim SH; Perera R; Hager LP; Dawson JH; Hoffman BM
    J Am Chem Soc; 2006 May; 128(17):5598-9. PubMed ID: 16637602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principal active species of horseradish peroxidase, compound I: a hybrid quantum mechanical/molecular mechanical study.
    Derat E; Cohen S; Shaik S; Altun A; Thiel W
    J Am Chem Soc; 2005 Oct; 127(39):13611-21. PubMed ID: 16190726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How is the reactivity of cytochrome P450cam affected by Thr252X mutation? A QM/MM study for X = serine, valine, alanine, glycine.
    Altarsha M; Benighaus T; Kumar D; Thiel W
    J Am Chem Soc; 2009 Apr; 131(13):4755-63. PubMed ID: 19281168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates.
    Altun A; Shaik S; Thiel W
    J Am Chem Soc; 2007 Jul; 129(29):8978-87. PubMed ID: 17595079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-state reactivity, electromerism, tautomerism, and "surprise" isomers in the formation of compound II of the enzyme horseradish peroxidase from the principal species, compound I.
    Derat E; Shaik S
    J Am Chem Soc; 2006 Jun; 128(25):8185-98. PubMed ID: 16787083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.
    Zheng J; Wang D; Thiel W; Shaik S
    J Am Chem Soc; 2006 Oct; 128(40):13204-15. PubMed ID: 17017800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deactivation mechanisms of chloroperoxidase during biotransformations.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 Apr; 93(6):1190-5. PubMed ID: 16425305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J; Palaniappan V; Gold A; Weiss R; Fitzgerald MM; Sullivan AM; Hosten CM
    J Inorg Biochem; 2006 Apr; 100(4):480-501. PubMed ID: 16513173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.