These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19572703)

  • 1. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.
    Vila JA; Scheraga HA
    Acc Chem Res; 2009 Oct; 42(10):1545-53. PubMed ID: 19572703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-mechanics-derived 13Calpha chemical shift server (CheShift) for protein structure validation.
    Vila JA; Arnautova YA; Martin OA; Scheraga HA
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16972-7. PubMed ID: 19805131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical 13C(alpha) chemical shift calculations for protein NMR structure determination, refinement, and validation.
    Vila JA; Aramini JM; Rossi P; Kuzin A; Su M; Seetharaman J; Xiao R; Tong L; Montelione GT; Scheraga HA
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14389-94. PubMed ID: 18787110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting 13Calpha chemical shifts for validation of protein structures.
    Vila JA; Villegas ME; Baldoni HA; Scheraga HA
    J Biomol NMR; 2007 Jul; 38(3):221-35. PubMed ID: 17558470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-based method to validate and repair flaws in protein structures.
    Martin OA; Arnautova YA; Icazatti AA; Scheraga HA; Vila JA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16826-31. PubMed ID: 24082119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of density functional models to reproduce observed (13)C(alpha) chemical shifts of proteins in solution.
    Vila JA; Baldoni HA; Scheraga HA
    J Comput Chem; 2009 Apr; 30(6):884-92. PubMed ID: 18780343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides.
    Villegas ME; Vila JA; Scheraga HA
    J Biomol NMR; 2007 Feb; 37(2):137-46. PubMed ID: 17180547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of 13C(alpha) chemical shifts for accurate determination of beta-sheet structures in solution.
    Vila JA; Arnautova YA; Scheraga HA
    Proc Natl Acad Sci U S A; 2008 Feb; 105(6):1891-6. PubMed ID: 18250334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are accurate computations of the 13C' shielding feasible at the DFT level of theory?
    Vila JA; Arnautova YA; Martin OA; Scheraga HA
    J Comput Chem; 2014 Feb; 35(4):309-12. PubMed ID: 24403017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of 13Calpha chemical shifts in protein structure determination.
    Vila JA; Ripoll DR; Scheraga HA
    J Phys Chem B; 2007 Jun; 111(23):6577-85. PubMed ID: 17516673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins.
    Mukkamala D; Zhang Y; Oldfield E
    J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone structure confirmation and side chain conformation refinement of a bradykinin mimic BKM-824 by comparing calculated (1)H, (13)C and (19)F chemical shifts with experiment.
    Wang B; Miskolizie M; Kotovych G; Pulay P
    J Biomol Struct Dyn; 2002 Aug; 20(1):71-80. PubMed ID: 12144353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-13 NMR shielding in the twenty common amino acids: comparisons with experimental results in proteins.
    Sun H; Sanders LK; Oldfield E
    J Am Chem Soc; 2002 May; 124(19):5486-95. PubMed ID: 11996591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What can we learn by computing 13Calpha chemical shifts for X-ray protein models?
    Arnautova YA; Vila JA; Martin OA; Scheraga HA
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):697-703. PubMed ID: 19564690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical shifts and three-dimensional protein structures.
    Oldfield E
    J Biomol NMR; 1995 Apr; 5(3):217-25. PubMed ID: 7787420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.