These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19572745)

  • 1. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy.
    Xie L; Ling X; Fang Y; Zhang J; Liu Z
    J Am Chem Soc; 2009 Jul; 131(29):9890-1. PubMed ID: 19572745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. R6G on graphene: high Raman detection sensitivity, yet decreased Raman cross-section.
    Thrall ES; Crowther AC; Yu Z; Brus LE
    Nano Lett; 2012 Mar; 12(3):1571-7. PubMed ID: 22335788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-layer effect in graphene-enhanced Raman scattering.
    Ling X; Zhang J
    Small; 2010 Sep; 6(18):2020-5. PubMed ID: 20730826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can graphene be used as a substrate for Raman enhancement?
    Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z
    Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing two-photon properties of molecules: large non-Condon effects dominate the resonance hyper-Raman scattering of rhodamine 6G.
    Milojevich CB; Silverstein DW; Jensen L; Camden JP
    J Am Chem Soc; 2011 Sep; 133(37):14590-2. PubMed ID: 21851085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The charge transferring between silver nanoparticles and R6G].
    Guo L; Zhang X; Du Z; Huang Y; Mo Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Feb; 21(1):16-8. PubMed ID: 12953567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.
    Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H
    Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide.
    Ren H; Kulkarni DD; Kodiyath R; Xu W; Choi I; Tsukruk VV
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2459-70. PubMed ID: 24494630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locally altering the electronic properties of graphene by nanoscopically doping it with Rhodamine 6G.
    Zhou X; He S; Brown KA; Mendez-Arroyo J; Boey F; Mirkin CA
    Nano Lett; 2013 Apr; 13(4):1616-21. PubMed ID: 23484520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy.
    Shim S; Stuart CM; Mathies RA
    Chemphyschem; 2008 Apr; 9(5):697-9. PubMed ID: 18330856
    [No Abstract]   [Full Text] [Related]  

  • 11. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate.
    Saini GS; Kaur S; Tripathi SK; Mahajan CG; Thanga HH; Verma AL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):653-8. PubMed ID: 15649797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy.
    Watanabe H; Hayazawa N; Inouye Y; Kawata S
    J Phys Chem B; 2005 Mar; 109(11):5012-20. PubMed ID: 16863161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectra of graphene ribbons.
    Saito R; Furukawa M; Dresselhaus G; Dresselhaus MS
    J Phys Condens Matter; 2010 Aug; 22(33):334203. PubMed ID: 21386493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman study of ion-induced defects in N-layer graphene.
    Jorio A; Lucchese MM; Stavale F; Ferreira EH; Moutinho MV; Capaz RB; Achete CA
    J Phys Condens Matter; 2010 Aug; 22(33):334204. PubMed ID: 21386494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis.
    Talib AJ; Fisher A; Voronine DV; Sinyukov AM; Bustamante Lopez SC; Ambardar S; Meissner KE; Scully MO; Sokolov AV
    Analyst; 2019 Jul; 144(14):4362-4370. PubMed ID: 31197297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal enhancement of chemical doping in graphene: a Raman spectroscopy study.
    Malard LM; Moreira RL; Elias DC; Plentz F; Alves ES; Pimenta MA
    J Phys Condens Matter; 2010 Aug; 22(33):334202. PubMed ID: 21386492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Oxide as a Multifunctional Platform for Raman and Fluorescence Imaging of Cells.
    Zhang Z; Liu Q; Gao D; Luo D; Niu Y; Yang J; Li Y
    Small; 2015 Jul; 11(25):3000-5. PubMed ID: 25708171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: application to rhodamine 6G.
    Niu K; Cong S; Lee SY
    J Chem Phys; 2009 Aug; 131(5):054311. PubMed ID: 19673566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.