BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 19573196)

  • 1. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes.
    Sokolova TG; Henstra AM; Sipma J; Parshina SN; Stams AJ; Lebedinsky AV
    FEMS Microbiol Ecol; 2009 May; 68(2):131-41. PubMed ID: 19573196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of thermophilic anaerobes.
    Wagner ID; Wiegel J
    Ann N Y Acad Sci; 2008 Mar; 1125():1-43. PubMed ID: 18378585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.
    Sipma J; Meulepas RJ; Parshina SN; Stams AJ; Lettinga G; Lens PN
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):421-8. PubMed ID: 14556037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia.
    Techtmann SM; Colman AS; Robb FT
    Environ Microbiol; 2009 May; 11(5):1027-37. PubMed ID: 19239487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Radioisotopic assays of rates of carbon monoxide conversion by anaerobic thermophilic prokaryotes].
    Slepova TV; Rusanov II; Sokolova TG; Bonch-Osmolovskaia EA; Pimenov NV
    Mikrobiologiia; 2007; 76(5):594-601. PubMed ID: 18069318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Thermophilic microbial communities of deep-sea hydrothermal environments].
    Miroshnichenko ML
    Mikrobiologiia; 2004; 73(1):5-18. PubMed ID: 15074034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs.
    Kochetkova TV; Rusanov II; Pimenov NV; Kolganova TV; Lebedinsky AV; Bonch-Osmolovskaya EA; Sokolova TG
    Extremophiles; 2011 May; 15(3):319-25. PubMed ID: 21387195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy.
    Fukuyama Y; Inoue M; Omae K; Yoshida T; Sako Y
    Adv Appl Microbiol; 2020; 110():99-148. PubMed ID: 32386607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early Microbial Evolution: The Age of Anaerobes.
    Martin WF; Sousa FL
    Cold Spring Harb Perspect Biol; 2015 Dec; 8(2):a018127. PubMed ID: 26684184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor.
    Sipma J; Osuna MB; Lettinga G; Stams AJ; Lens PN
    Water Res; 2007 May; 41(9):1995-2003. PubMed ID: 17336364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans.
    Parshina SN; Kijlstra S; Henstra AM; Sipma J; Plugge CM; Stams AJ
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):390-6. PubMed ID: 16133342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan.
    Omae K; Fukuyama Y; Yasuda H; Mise K; Yoshida T; Sako Y
    Arch Microbiol; 2019 Sep; 201(7):969-982. PubMed ID: 31030239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.
    Liu Y; Whitman WB
    Ann N Y Acad Sci; 2008 Mar; 1125():171-89. PubMed ID: 18378594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities.
    Duncan KE; Gieg LM; Parisi VA; Tanner RS; Tringe SG; Bristow J; Suflita JM
    Environ Sci Technol; 2009 Oct; 43(20):7977-84. PubMed ID: 19921923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exocellular electron transfer in anaerobic microbial communities.
    Stams AJ; de Bok FA; Plugge CM; van Eekert MH; Dolfing J; Schraa G
    Environ Microbiol; 2006 Mar; 8(3):371-82. PubMed ID: 16478444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity analysis of thermophilic hydrogenogenic carboxydotrophs by carbon monoxide dehydrogenase amplicon sequencing using new primers.
    Omae K; Oguro T; Inoue M; Fukuyama Y; Yoshida T; Sako Y
    Extremophiles; 2021 Jan; 25(1):61-76. PubMed ID: 33415441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea.
    Oelgeschläger E; Rother M
    Arch Microbiol; 2008 Sep; 190(3):257-69. PubMed ID: 18575848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
    Dekas AE; Poretsky RS; Orphan VJ
    Science; 2009 Oct; 326(5951):422-6. PubMed ID: 19833965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage.
    Kirk MF
    Environ Sci Technol; 2011 Aug; 45(15):6676-82. PubMed ID: 21740040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of CO conversion into H2 by Carboxydothermus hydrogenoformans.
    Zhao Y; Cimpoia R; Liu Z; Guiot SR
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1677-84. PubMed ID: 21822902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.