These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19573200)

  • 1. Investigations into peach seedling stunting caused by a replant soil.
    Bent E; Loffredo A; Yang JI; McKenry MV; Becker JO; Borneman J
    FEMS Microbiol Ecol; 2009 May; 68(2):192-200. PubMed ID: 19573200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between root-associated microorganisms and peach replant disease symptoms in a California soil.
    Yang JI; Ruegger PM; McKenry MV; Becker JO; Borneman J
    PLoS One; 2012; 7(10):e46420. PubMed ID: 23071565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random forest analysis reveals taxa predictive of Prunus replant disease in peach root microbiomes.
    Khan AR; Wicaksono WA; Ott NJ; Poret-Peterson AT; Browne GT
    PLoS One; 2022; 17(10):e0275587. PubMed ID: 36227955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of Anaerobic Soil Disinfestation for Control of Prunus Replant Disease.
    Browne G; Ott N; Poret-Peterson A; Gouran H; Lampinen B
    Plant Dis; 2018 Jan; 102(1):209-219. PubMed ID: 30673462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of soils conducive and non-conducive to Prunus replant disease.
    Khan AR; Wicaksono WA; Ott NJ; Poret-Peterson AT; Browne GT
    PLoS One; 2021; 16(12):e0260394. PubMed ID: 34890412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.
    Sun J; Zhang Q; Zhou J; Wei Q
    PLoS One; 2014; 9(10):e111744. PubMed ID: 25360786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery.
    Filion M; Hamelin RC; Bernier L; St-Arnaud M
    Appl Environ Microbiol; 2004 Jun; 70(6):3541-51. PubMed ID: 15184155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virulence of soil-borne pathogens and invasion by Prunus serotina.
    Reinhart KO; Tytgat T; Van der Putten WH; Clay K
    New Phytol; 2010 Apr; 186(2):484-95. PubMed ID: 20100208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the Diversity of Oomycetes Associated with Diseased Cotton Seedlings in Alabama.
    Olofintila OE; Lawrence KS; Noel ZA
    Plant Dis; 2024 May; 108(5):1363-1373. PubMed ID: 38105453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed-colonizing bacterial communities associated with the suppression of Pythium seedling disease in a municipal biosolids compost.
    Chen MH; Jack AL; McGuire IC; Nelson EB
    Phytopathology; 2012 May; 102(5):478-89. PubMed ID: 22352305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of peronosporomycete (oomycete) communities associated with the rhizosphere of different plant species.
    Arcate JM; Karp MA; Nelson EB
    Microb Ecol; 2006 Jan; 51(1):36-50. PubMed ID: 16389464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Candidatus Phytoplasma pruni', a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes.
    Davis RE; Zhao Y; Dally EL; Lee IM; Jomantiene R; Douglas SM
    Int J Syst Evol Microbiol; 2013 Feb; 63(Pt 2):766-776. PubMed ID: 22798643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.
    Mazzola M; Hewavitharana SS; Strauss SL
    Phytopathology; 2015 Apr; 105(4):460-9. PubMed ID: 25412009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root growth, function and rhizosphere microbiome analyses show local rather than systemic effects in apple plant response to replant disease soil.
    Lucas M; Balbín-Suárez A; Smalla K; Vetterlein D
    PLoS One; 2018; 13(10):e0204922. PubMed ID: 30296282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.
    Khabbaz SE; Abbasi PA
    Can J Microbiol; 2014 Jan; 60(1):25-33. PubMed ID: 24392923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.
    Klein E; Ofek M; Katan J; Minz D; Gamliel A
    Phytopathology; 2013 Jan; 103(1):23-33. PubMed ID: 22950737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First report of
    Hajihassani A; Ye W; Hampton BB
    J Nematol; 2019; 51():1-3. PubMed ID: 31088018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Brassicaceae Seed Meal Soil Amendment and Apple Rootstock Genotype on Microbiome Structure and Replant Disease Suppression.
    Wang L; Mazzola M
    Phytopathology; 2019 Apr; 109(4):607-614. PubMed ID: 30265201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests.
    Chavarriaga D; Bodles WJ; Leifert C; Belbahri L; Woodward S
    FEMS Microbiol Lett; 2007 Nov; 276(1):67-74. PubMed ID: 17937665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii.
    Yin B; Valinsky L; Gao X; Becker JO; Borneman J
    Appl Environ Microbiol; 2003 Mar; 69(3):1573-80. PubMed ID: 12620845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.