BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19573716)

  • 1. Three-dimensional coronary visualization, Part 1: modeling.
    Chen SJ; Schäfer D
    Cardiol Clin; 2009 Aug; 27(3):433-52. PubMed ID: 19573716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiographic views used for percutaneous coronary interventions: a three-dimensional analysis of physician-determined vs. computer-generated views.
    Green NE; Chen SY; Hansgen AR; Messenger JC; Groves BM; Carroll JD
    Catheter Cardiovasc Interv; 2005 Apr; 64(4):451-9. PubMed ID: 15744720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional coronary visualization, Part 2: 3D reconstruction.
    Schoonenberg G; Neubauer A; Grass M
    Cardiol Clin; 2009 Aug; 27(3):453-65. PubMed ID: 19573717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of assessment of native coronary arteries by standard versus three-dimensional coronary angiography.
    Agostoni P; Biondi-Zoccai G; Van Langenhove G; Cornelis K; Vermeersch P; Convens C; Vassanelli C; Van Den Heuvel P; Van Den Branden F; Verheye S
    Am J Cardiol; 2008 Aug; 102(3):272-9. PubMed ID: 18638585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical feasibility of a fully automated 3D reconstruction of rotational coronary X-ray angiograms.
    Neubauer AM; Garcia JA; Messenger JC; Hansis E; Kim MS; Klein AJ; Schoonenberg GA; Grass M; Carroll JD
    Circ Cardiovasc Interv; 2010 Feb; 3(1):71-9. PubMed ID: 20118152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two and three-dimensional quantitative coronary angiography.
    Pantos I; Efstathopoulos EP; Katritsis DG
    Cardiol Clin; 2009 Aug; 27(3):491-502. PubMed ID: 19573720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional quantitative coronary angiography.
    Saito T; Misaki M; Shirato K; Takishima T
    IEEE Trans Biomed Eng; 1990 Aug; 37(8):768-77. PubMed ID: 2210785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography.
    Andriotis A; Zifan A; Gavaises M; Liatsis P; Pantos I; Theodorakakos A; Efstathopoulos EP; Katritsis D
    Catheter Cardiovasc Interv; 2008 Jan; 71(1):28-43. PubMed ID: 18098180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer assistance for solving imaging problems.
    Garcia JA; Movassaghi B
    Cardiol Clin; 2009 Aug; 27(3):503-12. PubMed ID: 19573721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-targeted inversion-prepared b-TFE coronary MR angiography: initial results in patients.
    Katoh M; Spüntrup E; Kuehl H; Stuber M; Günther RW; Botnar RM
    Rofo; 2009 Nov; 181(11):1050-5. PubMed ID: 19830644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on topological description and matching of vessel tree].
    Ding R; Cui S; Huang J; Li H; Geng L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):275-9. PubMed ID: 17591241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of optimal viewing regions for X-ray coronary angiography based on a quantitative analysis of 3D reconstructed models.
    Garcia JA; Movassaghi B; Casserly IP; Klein AJ; Chen SY; Messenger JC; Hansgen A; Wink O; Groves BM; Carroll JD
    Int J Cardiovasc Imaging; 2009 Jun; 25(5):455-62. PubMed ID: 19101820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced visibility enhancement for stents and other devices: image processing aspects.
    Schoonenberg G; Florent R
    Cardiol Clin; 2009 Aug; 27(3):477-90. PubMed ID: 19573719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of virtual reality modeling language in the fields of medical digital image].
    Yu Z; He S; Xiong Q; Jing W; Chen H; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):222-8. PubMed ID: 12856584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Slice reconstruction of 3D vessel based on object-oriented quantization].
    Yu H; Mou X; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):318-21. PubMed ID: 12856609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular fluorescence casting and imaging cryomicrotomy for computerized three-dimensional renal arterial reconstruction.
    Lagerveld BW; ter Wee RD; de la Rosette JJ; Spaan JA; Wijkstra H
    BJU Int; 2007 Aug; 100(2):387-91. PubMed ID: 17498198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture.
    Pothuaud L; Carceller P; Hans D
    Bone; 2008 Apr; 42(4):775-87. PubMed ID: 18234577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D reconstruction of coronary arterial tree to optimize angiographic visualization.
    Chen SJ; Carroll JD
    IEEE Trans Med Imaging; 2000 Apr; 19(4):318-36. PubMed ID: 10909927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices.
    Chen SY; Carroll JD; Messenger JC
    IEEE Trans Med Imaging; 2002 Jul; 21(7):724-40. PubMed ID: 12374311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.