These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 19574152)

  • 1. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple scattering from assemblies of dislocation walls in three dimensions. Application to propagation in polycrystals.
    Maurel A; Pagneux V; Barra F; Lund F
    J Acoust Soc Am; 2007 Jun; 121(6):3418-31. PubMed ID: 17552693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wigner distribution of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids.
    Ghoshal G; Turner JA; Weaver RL
    J Acoust Soc Am; 2007 Oct; 122(4):2009-21. PubMed ID: 17902838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of spatial correlation function on attenuation of ultrasonic waves in two-phase materials.
    Liu D; Turner JA
    J Acoust Soc Am; 2008 May; 123(5):2570-6. PubMed ID: 18529176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis of longitudinal ultrasonic attenuation in sintered materials using a simplified two-phase model.
    Liu D; Turner JA
    J Acoust Soc Am; 2017 Feb; 141(2):1226. PubMed ID: 28253658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Aug; 51(6):697-708. PubMed ID: 21396672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between experimental and 2-D numerical studies of multiple scattering in Inconel600 by means of array probes.
    Shahjahan S; Rupin F; Aubry A; Chassignole B; Fouquet T; Derode A
    Ultrasonics; 2014 Jan; 54(1):358-67. PubMed ID: 23880120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicit model for ultrasonic attenuation in equiaxial hexagonal polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Apr; 51(3):303-9. PubMed ID: 21035157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation.
    Chaix JF; Garnier V; Corneloup G
    Ultrasonics; 2006 Feb; 44(2):200-10. PubMed ID: 16386772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling.
    Sha G; Huang M; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2020 Apr; 147(4):2442. PubMed ID: 32359302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of texture and grain shape on ultrasonic backscattering in polycrystals.
    Li J; Yang L; Rokhlin SI
    Ultrasonics; 2014 Sep; 54(7):1789-803. PubMed ID: 24630850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffuse ultrasonic backscatter at normal incidence through a curved interface.
    Ghoshal G; Turner JA
    J Acoust Soc Am; 2010 Dec; 128(6):3449-58. PubMed ID: 21218878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model.
    Vanhille C; Campos-Pozuelo C
    Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-dependent ultrasonic scattering in polycrystalline materials.
    Kube CM; Turner JA
    J Acoust Soc Am; 2016 Feb; 139(2):811-24. PubMed ID: 26936563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation and visualization of elastic waves using mass-spring lattice model.
    Yim H; Sohn Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):549-58. PubMed ID: 18238581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a time domain simulation of high frequency ultrasonic propagation in a suspension of rigid particles.
    Galaz B; Haïat G; Berti R; Taulier N; Amman JJ; Urbach W
    J Acoust Soc Am; 2010 Jan; 127(1):148-54. PubMed ID: 20058958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided waves in elastic plates with Gaussian section variation: experimental and numerical results.
    Marical P; El-Kettani ME; Predoi MV
    Ultrasonics; 2007 Dec; 47(1-4):1-9. PubMed ID: 17659314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.