BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19574461)

  • 1. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy.
    Lin Z; Murtaza I; Wang K; Jiao J; Gao J; Li PF
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):12103-8. PubMed ID: 19574461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of microRNA-23a-3p in the Progression of Human Aging Process by Targeting FOXO3a.
    Wang S; Sun Y; Yao L; Xing Y; Yang H; Ma Q
    Mol Biotechnol; 2024 Feb; 66(2):277-287. PubMed ID: 37087718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual antagonism between IP(3)RII and miRNA-133a regulates calcium signals and cardiac hypertrophy.
    Drawnel FM; Wachten D; Molkentin JD; Maillet M; Aronsen JM; Swift F; Sjaastad I; Liu N; Catalucci D; Mikoshiba K; Hisatsune C; Okkenhaug H; Andrews SR; Bootman MD; Roderick HL
    J Cell Biol; 2012 Nov; 199(5):783-98. PubMed ID: 23166348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEF2C Directly Interacts with Pre-miRNAs and Distinct RNPs to Post-Transcriptionally Regulate miR-23a-miR-27a-miR-24-2 microRNA Cluster Member Expression.
    Lozano-Velasco E; Garcia-Padilla C; Carmona-Garcia M; Gonzalez-Diaz A; Arequipa-Rendon A; Aranega AE; Franco D
    Noncoding RNA; 2024 May; 10(3):. PubMed ID: 38804364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling pathways mediating the response to hypertrophic stress in the heart.
    Force T; Hajjar R; Del Monte F; Rosenzweig A; Choukroun G
    Gene Expr; 1999; 7(4-6):337-48. PubMed ID: 10440234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two birds, one stone: NFATc3 controls dual actions of miR-204 in foam cell formation.
    van Solingen C; Moore KJ
    Eur Heart J; 2021 Dec; 42(47):4862-4864. PubMed ID: 34571536
    [No Abstract]   [Full Text] [Related]  

  • 7. miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.
    Wang K; Long B; Zhou J; Li PF
    J Biol Chem; 2010 Apr; 285(16):11903-12. PubMed ID: 20177053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac hypertrophy is positively regulated by MicroRNA miR-23a.
    Wang K; Lin ZQ; Long B; Li JH; Zhou J; Li PF
    J Biol Chem; 2012 Jan; 287(1):589-599. PubMed ID: 22084234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development.
    Kalsotra A; Wang K; Li PF; Cooper TA
    Genes Dev; 2010 Apr; 24(7):653-8. PubMed ID: 20299448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1.
    Wang JX; Jiao JQ; Li Q; Long B; Wang K; Liu JP; Li YR; Li PF
    Nat Med; 2011 Jan; 17(1):71-8. PubMed ID: 21186368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate and irregularity of electrical activation during atrial fibrillation affect myocardial NGF expression via different signalling routes.
    Saygili E; Rana OR; Günzel C; Rackauskas G; Saygili E; Noor-Ebad F; Gemein C; Zink MD; Schwinger RH; Mischke K; Weis J; Marx N; Schauerte P
    Cell Signal; 2012 Jan; 24(1):99-105. PubMed ID: 21889978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy.
    Wada S; Kato Y; Okutsu M; Miyaki S; Suzuki K; Yan Z; Schiaffino S; Asahara H; Ushida T; Akimoto T
    J Biol Chem; 2011 Nov; 286(44):38456-38465. PubMed ID: 21926429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Newfound features associated with Hennekam Syndrome (
    Safari Vejin T; Zepeda ME; Yglesias BS; Devito P
    Clin Case Rep; 2023 Nov; 11(11):e7891. PubMed ID: 38028107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long noncoding RNA
    Yuan M; Jia H; Zhao B; Zhang C; Zuo X
    Open Med (Wars); 2023; 18(1):20230681. PubMed ID: 37197359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABRO1 arrests cardiomyocyte proliferation and myocardial repair by suppressing PSPH.
    Wang T; Zhou LY; Li XM; Liu F; Liang L; Chen XZ; Ju J; Ponnusamy M; Wang K; Liu CY; Yan KW; Wang K
    Mol Ther; 2023 Mar; 31(3):847-865. PubMed ID: 36639869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases.
    Saenz-Pipaon G; Dichek DA
    Atherosclerosis; 2023 Jun; 374():44-54. PubMed ID: 36577600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preeclampsia and Fetal Growth Restriction as Risk Factors of Future Maternal Cardiovascular Disease-A Review.
    Sławek-Szmyt S; Kawka-Paciorkowska K; Ciepłucha A; Lesiak M; Ropacka-Lesiak M
    J Clin Med; 2022 Oct; 11(20):. PubMed ID: 36294369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small non-coding RNA therapeutics for cardiovascular disease.
    Shah AM; Giacca M
    Eur Heart J; 2022 Nov; 43(43):4548-4561. PubMed ID: 36106499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SZC-6, a small-molecule activator of SIRT3, attenuates cardiac hypertrophy in mice.
    Li ZY; Lu GQ; Lu J; Wang PX; Zhang XL; Zou Y; Liu PQ
    Acta Pharmacol Sin; 2023 Mar; 44(3):546-560. PubMed ID: 36042291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific microRNAs and heart failure: time for the next step toward application?
    Sigutova R; Evin L; Stejskal D; Ploticova V; Svagera Z
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2022 Dec; 166(4):359-368. PubMed ID: 35726831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.