These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19575127)

  • 1. [Experimental models of traumatic brain injury].
    Prieto R; Gutiérrez-González R; Pascual JM; Roda JM; Cerdán S; Matias-Guiu J; Barcia JA
    Neurocirugia (Astur); 2009 Jun; 20(3):225-44. PubMed ID: 19575127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental models of cerebral ischemia].
    Prieto-Arribas R; Moreno-Gutiérrez A; Simal-Hernández P; Pascual-Garvi JM; Matías-Guiu J; Roda JM; Barcia-Albacar JA
    Rev Neurol; 2008 Oct 16-31; 47(8):414-26. PubMed ID: 18937203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental models of repetitive brain injuries.
    Weber JT
    Prog Brain Res; 2007; 161():253-61. PubMed ID: 17618983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory?
    Morganti-Kossmann MC; Yan E; Bye N
    Injury; 2010 Jul; 41 Suppl 1():S10-3. PubMed ID: 20416875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat.
    Kharatishvili I; Sierra A; Immonen RJ; Gröhn OH; Pitkänen A
    Exp Neurol; 2009 May; 217(1):154-64. PubMed ID: 19416663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental models of traumatic brain injury: do we really need to build a better mousetrap?
    Morales DM; Marklund N; Lebold D; Thompson HJ; Pitkanen A; Maxwell WL; Longhi L; Laurer H; Maegele M; Neugebauer E; Graham DI; Stocchetti N; McIntosh TK
    Neuroscience; 2005; 136(4):971-89. PubMed ID: 16242846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options.
    Pitkänen A; Immonen RJ; Gröhn OH; Kharatishvili I
    Epilepsia; 2009 Feb; 50 Suppl 2():21-9. PubMed ID: 19187291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The optimal dosage and window of opportunity to maintain mitochondrial homeostasis following traumatic brain injury using the uncoupler FCCP.
    Pandya JD; Pauly JR; Sullivan PG
    Exp Neurol; 2009 Aug; 218(2):381-9. PubMed ID: 19477175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental models of traumatic axonal injury.
    Wang HC; Ma YB
    J Clin Neurosci; 2010 Feb; 17(2):157-62. PubMed ID: 20042337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking impact to cellular and molecular sequelae of CNS injury: modeling in vivo complexity with in vitro simplicity.
    Spaethling JM; Geddes-Klein DM; Miller WJ; von Reyn CR; Singh P; Mesfin M; Bernstein SJ; Meaney DF
    Prog Brain Res; 2007; 161():27-39. PubMed ID: 17618968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms.
    McIntosh TK; Smith DH; Meaney DF; Kotapka MJ; Gennarelli TA; Graham DI
    Lab Invest; 1996 Feb; 74(2):315-42. PubMed ID: 8780153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decompression craniectomy after traumatic brain injury: recent experimental results.
    Plesnila N
    Prog Brain Res; 2007; 161():393-400. PubMed ID: 17618993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review and rationale for the use of genetically engineered animals in the study of traumatic brain injury.
    Longhi L; Saatman KE; Raghupathi R; Laurer HL; Lenzlinger PM; Riess P; Neugebauer E; Trojanowski JQ; Lee VM; Grady MS; Graham DI; McIntosh TK
    J Cereb Blood Flow Metab; 2001 Nov; 21(11):1241-58. PubMed ID: 11702040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar injury: clinical relevance and potential in traumatic brain injury research.
    Park E; Ai J; Baker AJ
    Prog Brain Res; 2007; 161():327-38. PubMed ID: 17618988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traumatic brain injury.
    Aarabi B; Simard JM
    Curr Opin Crit Care; 2009 Dec; 15(6):548-53. PubMed ID: 19741521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular pathophysiology in pediatric traumatic brain injury.
    Philip S; Udomphorn Y; Kirkham FJ; Vavilala MS
    J Trauma; 2009 Aug; 67(2 Suppl):S128-34. PubMed ID: 19667845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacotherapy for traumatic brain injury: a review.
    Raghupathi R; McIntosh TK
    Proc West Pharmacol Soc; 1998; 41():241-6. PubMed ID: 9836300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI.
    Mazzeo AT; Beat A; Singh A; Bullock MR
    Exp Neurol; 2009 Aug; 218(2):363-70. PubMed ID: 19481077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposing roles for reactive astrocytes following traumatic brain injury.
    Laird MD; Vender JR; Dhandapani KM
    Neurosignals; 2008; 16(2-3):154-64. PubMed ID: 18253055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.