BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19575393)

  • 1. Signalling molecules and growth factors for tissue engineering of cartilage-what can we learn from the growth plate?
    Brochhausen C; Lehmann M; Halstenberg S; Meurer A; Klaus G; Kirkpatrick CJ
    J Tissue Eng Regen Med; 2009 Aug; 3(6):416-29. PubMed ID: 19575393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclooxygenases (COX-1 and COX-2) for tissue engineering of articular cartilage--from a developmental model to first results of tissue and scaffold expression.
    Brochhausen C; Zehbe R; Gross U; Libera J; Schubert H; Nüsing RM; Klaus G; Kirkpatrick CJ
    Biomed Mater Eng; 2008; 18(1):15-23. PubMed ID: 18198403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Tissue engineering of cartilage and bone : growth factors and signaling molecules].
    Brochhausen C; Lehmann M; Zehbe R; Watzer B; Grad S; Meurer A; Kirkpatrick CJ
    Orthopade; 2009 Nov; 38(11):1053-62. PubMed ID: 19851750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives for the tissue engineering of cartilage from a biological and biomaterial point of view.
    Brochhausen C; Zehbe R; Gross U; Schubert H; Kirkpatrick CJ
    J Appl Biomater Biomech; 2007; 5(2):70-81. PubMed ID: 20799176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-cycle control and the cartilage growth plate.
    Beier F
    J Cell Physiol; 2005 Jan; 202(1):1-8. PubMed ID: 15389526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes.
    Hunziker EB
    Microsc Res Tech; 1994 Aug; 28(6):505-19. PubMed ID: 7949396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering.
    Lee SH; Shin H
    Adv Drug Deliv Rev; 2007 May; 59(4-5):339-59. PubMed ID: 17499384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes of importance in the hormonal regulation of growth plate cartilage.
    Chagin AS; Sävendahl L
    Horm Res; 2009 Apr; 71 Suppl 2():41-7. PubMed ID: 19407496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Don't hedge your bets: hedgehog signaling as a central mediator of endochondral bone development and cartilage diseases.
    Rockel JS; Alman BA
    J Orthop Res; 2011 Jun; 29(6):810-5. PubMed ID: 21308758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design and protein engineering of growth factors for regenerative medicine and tissue engineering.
    Moss AJ; Sharma S; Brindle NP
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):717-21. PubMed ID: 19614582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and differentiation factors for cartilage healing and repair.
    Gaissmaier C; Koh JL; Weise K
    Injury; 2008 Apr; 39 Suppl 1():S88-96. PubMed ID: 18313476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro regulation of proliferation and differentiation within a postnatal growth plate of the cranial base by parathyroid hormone-related peptide (PTHrP).
    Wealthall RJ
    J Cell Physiol; 2009 Jun; 219(3):688-97. PubMed ID: 19229881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts).
    Bessa PC; Casal M; Reis RL
    J Tissue Eng Regen Med; 2008 Jan; 2(1):1-13. PubMed ID: 18293427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?
    Brouwers JE; van Donkelaar CC; Sengers BG; Huiskes R
    J Biomech; 2006; 39(15):2774-82. PubMed ID: 16298375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrins in growth plate cartilage.
    Egerbacher M; Haeusler G
    Pediatr Endocrinol Rev; 2003 Sep; 1(1):2-8. PubMed ID: 16437008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysplastic histogenesis of cartilage growth plate by alteration of sulphation pathway: a transgenic model.
    Cornaglia AI; Casasco A; Casasco M; Riva F; Necchi V
    Connect Tissue Res; 2009; 50(4):232-42. PubMed ID: 19637059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factor binding to the pericellular matrix and its importance in tissue engineering.
    Macri L; Silverstein D; Clark RA
    Adv Drug Deliv Rev; 2007 Nov; 59(13):1366-81. PubMed ID: 17916397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal growth cartilage: equine tissue specific gene expression.
    Johannessen MK; Skretting G; Ytrehus B; Røed KH
    Biochem Biophys Res Commun; 2007 Mar; 354(4):975-80. PubMed ID: 17276390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation.
    Melrose J; Shu C; Whitelock JM; Lord MS
    Matrix Biol; 2016; 52-54():363-383. PubMed ID: 26807757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.