BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 19575405)

  • 41. Creation of allotypic active sites during oxidative stress.
    Mirzaei H; Regnier F
    J Proteome Res; 2006 Sep; 5(9):2159-68. PubMed ID: 16944927
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidation of carboxyamidomethyl cysteine may add complexity to protein identification.
    Yagüe J; Núñez A; Boix M; Esteller M; Alfonso P; Casal JI
    Proteomics; 2005 Jul; 5(11):2761-8. PubMed ID: 15966008
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of pertussis toxoid by two-dimensional liquid chromatography-tandem mass spectrometry.
    Tummala M; Lee SM; Chess E; Hu P
    Anal Biochem; 2010 Jun; 401(2):295-302. PubMed ID: 20206117
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strategy for identification and detection of multiple oxidative modifications within proteins applied on persulfate-oxidized hemoglobin and human serum albumin.
    Mörtstedt H; Jeppsson MC; Ferrari G; Jönsson BA; Kåredal MH; Lindh CH
    Rapid Commun Mass Spectrom; 2011 Jan; 25(2):327-40. PubMed ID: 21192028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative methyl linoleate and methyl linolenate oxidation in the presence of bovine serum albumin at several lipid/protein ratios.
    Zamora R; Hidalgo FJ
    J Agric Food Chem; 2003 Jul; 51(16):4661-7. PubMed ID: 14705893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mass spectrometric identification of modifications to human serum albumin treated with hydrogen peroxide.
    Finch JW; Crouch RK; Knapp DR; Schey KL
    Arch Biochem Biophys; 1993 Sep; 305(2):595-9. PubMed ID: 8373198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectrometry.
    Shearer D; Ens W; Standing K; Valdimarsson G
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1553-62. PubMed ID: 18385075
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry.
    Maleknia SD; Kiselar JG; Downard KM
    Rapid Commun Mass Spectrom; 2002; 16(1):53-61. PubMed ID: 11754247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes.
    Rondeau P; Singh NR; Caillens H; Tallet F; Bourdon E
    Free Radic Biol Med; 2008 Sep; 45(6):799-812. PubMed ID: 18616999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combined proteomic approaches for the identification of specific amino acid residues modified by 4-hydroxy-2-nonenal under physiological conditions.
    Mendez D; Hernaez ML; Diez A; Puyet A; Bautista JM
    J Proteome Res; 2010 Nov; 9(11):5770-81. PubMed ID: 20818828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of carbonyl-modified proteins in interfibrillar rat mitochondria using N'-aminooxymethylcarbonylhydrazino-D-biotin as an aldehyde/keto-reactive probe in combination with Western blot analysis and tandem mass spectrometry.
    Chung WG; Miranda CL; Maier CS
    Electrophoresis; 2008 Mar; 29(6):1317-24. PubMed ID: 18348219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry.
    Pan Y; Stocks BB; Brown L; Konermann L
    Anal Chem; 2009 Jan; 81(1):28-35. PubMed ID: 19055344
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Secondary reactions and strategies to improve quantitative protein footprinting.
    Xu G; Kiselar J; He Q; Chance MR
    Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydroxyl radical oxidation of cytochrome c by aerobic radiolysis.
    Nukuna BN; Sun G; Anderson VE
    Free Radic Biol Med; 2004 Oct; 37(8):1203-13. PubMed ID: 15451060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu-protein-binding sites.
    Bridgewater JD; Vachet RW
    Anal Biochem; 2005 Jun; 341(1):122-30. PubMed ID: 15866536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigating protein haptenation mechanisms of skin sensitisers using human serum albumin as a model protein.
    Aleksic M; Pease CK; Basketter DA; Panico M; Morris HR; Dell A
    Toxicol In Vitro; 2007 Jun; 21(4):723-33. PubMed ID: 17317089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative identification of protein nitration sites.
    Chiappetta G; Corbo C; Palmese A; Galli F; Piroddi M; Marino G; Amoresano A
    Proteomics; 2009 Mar; 9(6):1524-37. PubMed ID: 19242934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative modifications in glycated insulin.
    Guedes S; Vitorino R; Domingues MR; Amado F; Domingues P
    Anal Bioanal Chem; 2010 Jul; 397(5):1985-95. PubMed ID: 20496032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of cysteine residues following oxidation to cysteic acid in the presence of sodium azide.
    Manneberg M; Lahm HW; Fountoulakis M
    Anal Biochem; 1995 Nov; 231(2):349-53. PubMed ID: 8594984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.