BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 19575405)

  • 61. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases.
    Rivett AJ; Roseman JE; Oliver CN; Levine RL; Stadtman ER
    Prog Clin Biol Res; 1985; 180():317-28. PubMed ID: 2863828
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress.
    Fedorova M; Todorovsky T; Kuleva N; Hoffmann R
    Proteomics; 2010 Jul; 10(14):2692-700. PubMed ID: 20455213
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin.
    Thaysen-Andersen M; Jørgensen SB; Wilhelmsen ES; Petersen JW; Højrup P
    Vaccine; 2007 Mar; 25(12):2213-27. PubMed ID: 17240009
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine.
    Chetyrkin SV; Mathis ME; Ham AJ; Hachey DL; Hudson BG; Voziyan PA
    Free Radic Biol Med; 2008 Apr; 44(7):1276-85. PubMed ID: 18374270
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Onset of oxidative damage in alpha-crystallin by radical probe mass spectrometry.
    Shum WK; Maleknia SD; Downard KM
    Anal Biochem; 2005 Sep; 344(2):247-56. PubMed ID: 16091281
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of carbonylated peptides by tandem mass spectrometry using a precursor ion-like scan in negative ion mode.
    Bollineni RCh; Fedorova M; Hoffmann R
    J Proteomics; 2011 Oct; 74(11):2351-9. PubMed ID: 21669303
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.
    Toews J; Rogalski JC; Clark TJ; Kast J
    Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Site-specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose.
    Meltretter J; Seeber S; Humeny A; Becker CM; Pischetsrieder M
    J Agric Food Chem; 2007 Jul; 55(15):6096-103. PubMed ID: 17590008
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Active focal segmental glomerulosclerosis is associated with massive oxidation of plasma albumin.
    Musante L; Candiano G; Petretto A; Bruschi M; Dimasi N; Caridi G; Pavone B; Del Boccio P; Galliano M; Urbani A; Scolari F; Vincenti F; Ghiggeri GM
    J Am Soc Nephrol; 2007 Mar; 18(3):799-810. PubMed ID: 17287427
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Determination of 2-oxohistidine by amino acid analysis.
    Lewisch SA; Levine RL
    Anal Biochem; 1995 Nov; 231(2):440-6. PubMed ID: 8594998
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues.
    Ogata N
    Biochemistry; 2007 Apr; 46(16):4898-911. PubMed ID: 17397139
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new biomarker of protein oxidation degree and site using angiotensin as the target by MS.
    Tian Y; Liu R; Zong W; Sun F; Wang M; Zhang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):908-11. PubMed ID: 20045374
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein glutathionylation and oxidative stress.
    Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Aug; 855(1):59-65. PubMed ID: 17222592
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of the metal-binding site of bovine growth hormone through site-specific metal-catalyzed oxidation and high-performance liquid chromatography-tandem mass spectrometry.
    Hovorka SW; Williams TD; Schöneich C
    Anal Biochem; 2002 Jan; 300(2):206-11. PubMed ID: 11779112
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Unrestricted Mass Spectrometric Data Analysis for Identification, Localization, and Quantification of Oxidative Protein Modifications.
    Rykær M; Svensson B; Davies MJ; Hägglund P
    J Proteome Res; 2017 Nov; 16(11):3978-3988. PubMed ID: 28920440
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrospray-assisted modification of proteins: a radical probe of protein structure.
    Maleknia SD; Chance MR; Downard KM
    Rapid Commun Mass Spectrom; 1999; 13(23):2352-8. PubMed ID: 10567934
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Primary sequence and glycation at lysine-548 of bovine serum albumin.
    Wada Y
    J Mass Spectrom; 1996 Mar; 31(3):263-6. PubMed ID: 8799278
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging.
    Toda T; Nakamura M; Morisawa H; Hirota M; Nishigaki R; Yoshimi Y
    Geriatr Gerontol Int; 2010 Jul; 10 Suppl 1():S25-31. PubMed ID: 20590839
    [TBL] [Abstract][Full Text] [Related]  

  • 80. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants.
    Chen HJ; Chang CM; Lin WP; Cheng DL; Leong MI
    Chembiochem; 2008 Jan; 9(2):312-23. PubMed ID: 18161731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.