These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 19575425)
1. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles. Frigoli M; Ouadahi K; Larpent C Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425 [TBL] [Abstract][Full Text] [Related]
2. Ratiometric fluorescence detection of mercury ions in water by conjugated polymer nanoparticles. Childress ES; Roberts CA; Sherwood DY; LeGuyader CL; Harbron EJ Anal Chem; 2012 Feb; 84(3):1235-9. PubMed ID: 22280026 [TBL] [Abstract][Full Text] [Related]
3. Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. Yang P; Zhao Y; Lu Y; Xu QZ; Xu XW; Dong L; Yu SH ACS Nano; 2011 Mar; 5(3):2147-54. PubMed ID: 21344860 [TBL] [Abstract][Full Text] [Related]
4. Fluorescent sensor for Cu2+ with a tunable emission wavelength. Mokhir A; Kiel A; Herten DP; Kraemer R Inorg Chem; 2005 Aug; 44(16):5661-6. PubMed ID: 16060616 [TBL] [Abstract][Full Text] [Related]
5. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556 [TBL] [Abstract][Full Text] [Related]
6. Development of FRET-based dual-excitation ratiometric fluorescent pH probes and their photocaged derivatives. Yuan L; Lin W; Cao Z; Wang J; Chen B Chemistry; 2012 Jan; 18(4):1247-55. PubMed ID: 22213439 [TBL] [Abstract][Full Text] [Related]
7. A nanoparticle-supported fluorescence resonance energy transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water. Ma C; Zeng F; Wu G; Wu S Anal Chim Acta; 2012 Jul; 734():69-78. PubMed ID: 22704474 [TBL] [Abstract][Full Text] [Related]
9. Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications. Gong YJ; Zhang XB; Zhang CC; Luo AL; Fu T; Tan W; Shen GL; Yu RQ Anal Chem; 2012 Dec; 84(24):10777-84. PubMed ID: 23171399 [TBL] [Abstract][Full Text] [Related]
10. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds. Ma C; Zeng F; Huang L; Wu S J Phys Chem B; 2011 Feb; 115(5):874-82. PubMed ID: 21250732 [TBL] [Abstract][Full Text] [Related]
11. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
12. Highly Stable Core-Shell Structured Semiconducting Polymer Nanoparticles for FRET-Based Intracellular pH Imaging. Bao B; Su P; Yang Z; Zhai X; Zhang J; Xu Y; Liu Y; Gu B; Wang L Adv Healthc Mater; 2019 Jul; 8(14):e1900255. PubMed ID: 31148405 [TBL] [Abstract][Full Text] [Related]
13. Efficient excitation-energy transfer in ion-based organic nanoparticles with versatile tunability of the fluorescence colours. Yao H; Ashiba K Chemphyschem; 2012 Aug; 13(11):2703-10. PubMed ID: 22674683 [TBL] [Abstract][Full Text] [Related]
14. Highly fluorescent amidine/schiff base dual-modified polyacrylonitrile nanoparticles for selective and sensitive detection of copper ions in living cells. Lee I; Kim S; Kim SN; Jang Y; Jang J ACS Appl Mater Interfaces; 2014 Oct; 6(19):17151-6. PubMed ID: 25197957 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
16. Long-Range Energy Transfer between Dye-Loaded Nanoparticles: Observation and Amplified Detection of Nucleic Acids. Biswas DS; Gaki P; Cruz Da Silva E; Combes A; Reisch A; Didier P; Klymchenko AS Adv Mater; 2023 Jul; 35(29):e2301402. PubMed ID: 37073109 [TBL] [Abstract][Full Text] [Related]
17. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
18. Biosensor of alkaline phosphatase based on non-fluorescent FRET of Eu Li FS; Zhang YL; Li XB; Li BL; Liu YF Anal Bioanal Chem; 2017 Sep; 409(23):5491-5500. PubMed ID: 28741110 [TBL] [Abstract][Full Text] [Related]
19. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH. Chen J; Tang Y; Wang H; Zhang P; Li Y; Jiang J J Colloid Interface Sci; 2016 Dec; 484():298-307. PubMed ID: 27632075 [TBL] [Abstract][Full Text] [Related]
20. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters. Deng X; Huang X; Wu D Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]