These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 19575443)

  • 1. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-based measurements of cytochrome P450 enzyme activity of primary mammalian hepatocytes.
    Anderson K; Cooper JM; Haswell SJ; Marshall D; Yin H; Zhang X
    Analyst; 2010 Jun; 135(6):1282-7. PubMed ID: 20401410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of portable in situ fluorescence optical detection for microfluidic 3D cell culture assays.
    Choi JR; Sung JH; Shuler ML; Kim D
    Opt Lett; 2010 May; 35(9):1374-6. PubMed ID: 20436574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new technique for assaying cytochrome P450 enzyme activity in a single cell.
    Taira Z; Yamase D; Ueda Y
    Cell Biol Toxicol; 2007 May; 23(3):143-51. PubMed ID: 17206464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time fluorescence detection of multiple microscale cell culture analog devices in situ.
    Oh TI; Sung JH; Tatosian DA; Shuler ML; Kim D
    Cytometry A; 2007 Oct; 71(10):857-65. PubMed ID: 17559134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of zone-like liver function gradients in HepG2 cells by varying culture medium height.
    Camp JP; Capitano AT
    Biotechnol Prog; 2007; 23(6):1485-91. PubMed ID: 17958443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of culture time on the expression of drug-metabolizing enzymes in primary human hepatocytes and hepatoma cell line HepG2.
    Wilkening S; Bader A
    J Biochem Mol Toxicol; 2003; 17(4):207-13. PubMed ID: 12898644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of chemical-polymer surface interactions in microfluidic cell culture devices.
    Xu H; Shuler ML
    Biotechnol Prog; 2009; 25(2):543-51. PubMed ID: 19358211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient analysis of cytochrome P4501A catalytic activity, porphyrins, and total proteins in chicken embryo hepatocyte cultures with a fluorescence plate reader.
    Kennedy SW; Jones SP; Bastien LJ
    Anal Biochem; 1995 Apr; 226(2):362-70. PubMed ID: 7793639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology.
    Hellmich W; Pelargus C; Leffhalm K; Ros A; Anselmetti D
    Electrophoresis; 2005 Oct; 26(19):3689-96. PubMed ID: 16152668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical guide to microfluidic perfusion culture of adherent mammalian cells.
    Kim L; Toh YC; Voldman J; Yu H
    Lab Chip; 2007 Jun; 7(6):681-94. PubMed ID: 17538709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput fluorescence detection using an integrated zone-plate array.
    Schonbrun E; Abate AR; Steinvurzel PE; Weitz DA; Crozier KB
    Lab Chip; 2010 Apr; 10(7):852-6. PubMed ID: 20300671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.