These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19576310)

  • 21. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields.
    Wang H; Wang J; Lyu L; Wei S; Zhang C
    Comput Methods Biomech Biomed Engin; 2024; 27(4):478-488. PubMed ID: 36912751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic permeability of the lacunar-canalicular system in human cortical bone.
    Benalla M; Palacio-Mancheno PE; Fritton SP; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2014 Aug; 13(4):801-12. PubMed ID: 24146291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment.
    Vahidi G; Rux C; Sherk VD; Heveran CM
    Bone; 2021 Feb; 143():115663. PubMed ID: 32987198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of bone permeability using accurate microstructural measurements.
    Beno T; Yoon YJ; Cowin SC; Fritton SP
    J Biomech; 2006; 39(13):2378-87. PubMed ID: 16176815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity.
    Zhao S; Liu H; Li Y; Song Y; Wang W; Zhang C
    Med Biol Eng Comput; 2020 Mar; 58(3):509-518. PubMed ID: 31900816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Spatial organization of the lacunar-canalicular system in the structures of bone lamellae].
    Denisov-Nikol'skiĭ IuI; Doktorov AA
    Arkh Anat Gistol Embriol; 1987 Aug; 93(8):37-43. PubMed ID: 3447557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone.
    Jin ZH; Janes JG; Peterson ML
    Ann Biomed Eng; 2021 Jan; 49(1):299-309. PubMed ID: 32514933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solute convection in dynamically compressed cartilage.
    Evans RC; Quinn TM
    J Biomech; 2006; 39(6):1048-55. PubMed ID: 16549095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis.
    Sansalone V; Kaiser J; Naili S; Lemaire T
    Biomech Model Mechanobiol; 2013 Jun; 12(3):533-53. PubMed ID: 22869342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.
    Gururaja S; Kim HJ; Swan CC; Brand RA; Lakes RS
    Ann Biomed Eng; 2005 Jan; 33(1):7-25. PubMed ID: 15709702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of convection on bidirectional peritoneal solute transport: predictions from a distributed model.
    Leypoldt JK; Henderson LW
    Ann Biomed Eng; 1992; 20(4):463-80. PubMed ID: 1510297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles.
    Reddy ST; Berk DA; Jain RK; Swartz MA
    J Appl Physiol (1985); 2006 Oct; 101(4):1162-9. PubMed ID: 16763103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction.
    Fritton SP; Weinbaum S
    Annu Rev Fluid Mech; 2009 Jan; 41():347-374. PubMed ID: 20072666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT.
    Hesse B; Varga P; Langer M; Pacureanu A; Schrof S; Männicke N; Suhonen H; Maurer P; Cloetens P; Peyrin F; Raum K
    J Bone Miner Res; 2015 Feb; 30(2):346-56. PubMed ID: 25130720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of flow on solute exchange between fluids and supported biosurfaces.
    Hermens WT; Benes M; Richter R; Speijer H
    Biotechnol Appl Biochem; 2004 Jun; 39(Pt 3):277-84. PubMed ID: 15154838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery.
    Swaminathan R; Bicknese S; Periasamy N; Verkman AS
    Biophys J; 1996 Aug; 71(2):1140-51. PubMed ID: 8842251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach.
    Yao H; Gu WY
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):63-72. PubMed ID: 16767452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.