BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 19576413)

  • 1. Type I collagen-mediated synthesis of noble metallic nanoparticles networks and the applications in Surface-Enhanced Raman Scattering and electrochemistry.
    Sun Y; Sun L; Zhang B; Xu F; Liu Z; Guo C; Zhang Y; Li Z
    Talanta; 2009 Aug; 79(3):562-9. PubMed ID: 19576413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor.
    Song Y; Cui K; Wang L; Chen S
    Nanotechnology; 2009 Mar; 20(10):105501. PubMed ID: 19417520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF
    J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication, characterization, and application in surface-enhanced Raman spectrum of assembled type-I collagen-silver nanoparticle multilayered films.
    Sun Y; Wang L; Sun L; Guo C; Yang T; Liu Z; Xu F; Li Z
    J Chem Phys; 2008 Feb; 128(7):074704. PubMed ID: 18298161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering.
    Zhang K; Yao S; Li G; Hu Y
    Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application.
    Shang L; Wang Y; Huang L; Dong S
    Langmuir; 2007 Jul; 23(14):7738-44. PubMed ID: 17552547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional nanocatalyst of bimetallic nanoparticle/TiO2 with enhanced performance in electrochemical and photoelectrochemical applications.
    Wen D; Guo S; Wang Y; Dong S
    Langmuir; 2010 Jul; 26(13):11401-6. PubMed ID: 20369896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering.
    Qiao Y; Chen H; Lin Y; Huang J
    Langmuir; 2011 Sep; 27(17):11090-7. PubMed ID: 21761928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties.
    Wang Y; Asefa T
    Langmuir; 2010 May; 26(10):7469-74. PubMed ID: 20148597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: effects of structural evolution and surface modification.
    Qiu H; Zhang Z; Huang X; Qu Y
    Chemphyschem; 2011 Aug; 12(11):2118-23. PubMed ID: 21626645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane.
    Li MD; Cui Y; Gao MX; Luo J; Ren B; Tian ZQ
    Anal Chem; 2008 Jul; 80(13):5118-25. PubMed ID: 18489182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.
    Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z
    Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy.
    Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK
    Analyst; 2010 May; 135(5):1084-9. PubMed ID: 20419260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles.
    Golub E; Pelossof G; Freeman R; Zhang H; Willner I
    Anal Chem; 2009 Nov; 81(22):9291-8. PubMed ID: 19860374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.